A196837 Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers.
1, 2, -3, 3, -12, 11, 4, -30, 70, -50, 5, -60, 255, -450, 274, 6, -105, 700, -2205, 3248, -1764, 7, -168, 1610, -7840, 20307, -26264, 13068, 8, -252, 3276, -22680, 89796, -201852, 236248, -109584, 9, -360, 6090, -56700, 316365, -1077300, 2171040, -2345400, 1026576, 10, -495, 10560, -127050, 946638, -4510275, 13667720, -25228500, 25507152, -10628640
Offset: 1
Examples
n\m 0 1 2 3 4 5... 1 1 2 2 -3 3 3 -12 11 4 4 -30 70 -50 5 5 -60 255 -450 274 6 6 -105 700 -2205 3248 -1764 ... n=4 (A001551=2*A196836): the row polynomial factorizes into 2*(2-5*x)*(1-5*x+5*x^2). n=5: 1^k + 2^k + 3^k + 4^k + 5^k, k>=0, (A001552) has as e.g.f. Sum_{j=1..5} exp(j*x). The o.g.f. is Sum_{j=1..5} 1/(1-j*x), and this is (5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1-j*x). n=6 (A001553): the row polynomial factorizes into (2 - 7*x)*(3 - 42*x + 203*x^2 - 392*x^3 + 252*x^4). Sums of powers of the first n positive integers in terms of S2: n=4: A001551(k) = 4*S2(k+4,4) - 30*S2(k+3,4) + 70*S2(k+2,4) - 50*S2(k+1,4), k >= 0. E.g., k=3: 4*350 - 30*65 + 70*10 - 50*1 = 100 = A001551(3). From _Wolfdieter Lang_, Oct 12 2011: (Start) Row polynomial for n=3: P(3,x) = (1-2*x)*(1-3*x) + (1-1*x)*(1-3*x) + (1-1*x)*(1-2*x) = 3 - 12*x + 11*x^2. a(3,2) = +(sigma_2(2,3) + sigma_2(1,3) + sigma_2(1,2)) = 2*3 + 1*3 + 1*2 = 11 = +1*sigma_2(1,2,3) = +1*|S1(4,4-2)|. S1,S2 formula for sums of powers with n=4, k=3: A001551(3) = Sum_{j=1..n} j^3 = 1*4*350 - 3*10*65 + 2*35*10 - 1*50*1 = 100. (End)
Links
- José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
- Wolfdieter Lang, Proofs and first 15 row polynomials, 2011.
Programs
-
Mathematica
a[n_, m_] := (n-m)*StirlingS1[n+1, n+1-m]; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 0, n-1}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)
-
Python
from itertools import count, islice from sympy.functions.combinatorial.numbers import stirling def A196837_T(n,m): return (n-m)*stirling(n+1,n+1-m,kind=1,signed=True) def A196837_gen(): # generator of terms return (A196837_T(n,m) for n in count(1) for m in range(n)) A196837_list = list(islice(A196837_gen(),40)) # Chai Wah Wu, Oct 24 2024
Formula
a(n,m) = [x^m] P(n,x), m=0..n-1, with the row polynomials defined by
(Sum_{j=1..n} 1/(1-j*x))*Product_{j=1..n} (1-j*x) (see the comment given above).
Sum_{j=1..n} j^k = Sum_{m=0..n-1} a(n,m)*S2(k+n-m,n), n >= 1, k >= 0, with the Stirling2 triangle A048993.
From Wolfdieter Lang, Oct 12 2011: (Start)
The row polynomial P(n,x) is therefore
Sum_{j=1..n} (Product_{k=1..n omitting k=j} (1-k*x)), n >= 1. This leads to:
a(n,m) = (n-m)*S1(n+1, n+1-m), n-1 >= m >= 0, with the (signed) Stirling1 numbers A048994. For the proof see the link.
(End)
A similar polynomial occurs in the expansion of 1/(n+x)^2 as a series with factorials in the denominator: 1/(n+x)^2 = -Sum_{k>=1} n!/(n+k+1)! * P(k,1/x) x^(k-1). - Matt Majic, Nov 01 2019
Comments