cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196837 Coefficient table of numerator polynomials of o.g.f.s for partial sums of powers of positive integers.

Original entry on oeis.org

1, 2, -3, 3, -12, 11, 4, -30, 70, -50, 5, -60, 255, -450, 274, 6, -105, 700, -2205, 3248, -1764, 7, -168, 1610, -7840, 20307, -26264, 13068, 8, -252, 3276, -22680, 89796, -201852, 236248, -109584, 9, -360, 6090, -56700, 316365, -1077300, 2171040, -2345400, 1026576, 10, -495, 10560, -127050, 946638, -4510275, 13667720, -25228500, 25507152, -10628640
Offset: 1

Views

Author

Wolfdieter Lang, Oct 10 2011

Keywords

Comments

The k-th power of the positive integers has partial sums Sum_{j=1..n} j^k given as column number n >= 1, in the array A103438 (not in the triangle; see the example array given there; note that 0^0 has been set to 0 there).
The o.g.f. of column number n >= 1 of the array A103438 is obtained via Laplace transformation from the e.g.f. which is given there as
exp(x)*(exp(n*x)-1)/(exp(x)-1) = Sum_{j=1..n} exp(j*x)
(it is trivial that the sum is the e.g.f.).
The o.g.f. is, therefore, Sum_{j=1..n} 1/(1-j*x), which is rewritten as P(n,x)/Product_{j=1..n} (1-j*x). This defines the row polynomials P(n,x) of the present triangle. See the link for details.
This e.g.f. - o.g.f. connection proves some conjectures by Simon Plouffe. See the o.g.f. Maple programs under, e.g., A001551(n=4) and A001552 (n=5).
This triangle organizes the sum of powers of the first n positive integers in terms of the column no. n of the Stirling2 numbers A048993 (see the formula and example given below, as well as the link).
From Wolfdieter Lang, Oct 12 2011: (Start)
With the formulas given below one finds for n >= 1, k >= 0, Sum_{j=1..n} j^k =
Sum_{m=0..min(k,n-1)} ((n-m)*S1(n+1, n-m+1)*S2(k+n-m, n)),
with the Stirling numbers S1 from A048994 and S2 from A048993 (this formula I did not (yet) find in the literature). See the link for the proof.
For two other formulas expressing these sums of k-th powers of the first n positive integers in terms of the row no. k of Stirling2 numbers and binomials in n see the D. E. Knuth reference given under A093556, p. 285.
See also the given link below, eqs. (11) and (12). (End)

Examples

			n\m  0    1    2     3     4      5...
1    1
2    2   -3
3    3  -12   11
4    4  -30   70   -50
5    5  -60  255  -450   274
6    6 -105  700 -2205  3248  -1764
...
n=4 (A001551=2*A196836): the row polynomial factorizes into 2*(2-5*x)*(1-5*x+5*x^2).
n=5: 1^k + 2^k + 3^k + 4^k + 5^k, k>=0, (A001552) has as e.g.f. Sum_{j=1..5} exp(j*x). The o.g.f. is
  Sum_{j=1..5} 1/(1-j*x), and this is
  (5 - 60*x + 255*x^2 - 450*x^3 + 274*x^4)/Product_{j=1..5} (1-j*x).
n=6 (A001553): the row polynomial factorizes into
     (2 - 7*x)*(3 - 42*x + 203*x^2 - 392*x^3 + 252*x^4).
Sums of powers of the first n positive integers in terms of S2:
n=4: A001551(k) = 4*S2(k+4,4) - 30*S2(k+3,4) + 70*S2(k+2,4) - 50*S2(k+1,4), k >= 0. E.g., k=3: 4*350 - 30*65 + 70*10 - 50*1 = 100 = A001551(3).
From _Wolfdieter Lang_, Oct 12 2011: (Start)
Row polynomial for n=3: P(3,x) = (1-2*x)*(1-3*x) + (1-1*x)*(1-3*x) + (1-1*x)*(1-2*x) = 3 - 12*x + 11*x^2.
a(3,2) = +(sigma_2(2,3) + sigma_2(1,3) + sigma_2(1,2)) =
  2*3 + 1*3 + 1*2 = 11 = +1*sigma_2(1,2,3) = +1*|S1(4,4-2)|.
S1,S2 formula for sums of powers with n=4, k=3:
A001551(3) = Sum_{j=1..n} j^3 = 1*4*350 - 3*10*65 + 2*35*10 - 1*50*1 = 100. (End)
		

Crossrefs

Cf. A103438, A093556/A093557 (for sums of powers).

Programs

  • Mathematica
    a[n_, m_] := (n-m)*StirlingS1[n+1, n+1-m]; Flatten[ Table[ a[n, m], {n, 1, 10}, {m, 0, n-1}] ] (* Jean-François Alcover, Dec 02 2011, after Wolfdieter Lang *)
  • Python
    from itertools import count, islice
    from sympy.functions.combinatorial.numbers import stirling
    def A196837_T(n,m): return (n-m)*stirling(n+1,n+1-m,kind=1,signed=True)
    def A196837_gen(): # generator of terms
        return (A196837_T(n,m) for n in count(1) for m in range(n))
    A196837_list = list(islice(A196837_gen(),40)) # Chai Wah Wu, Oct 24 2024

Formula

a(n,m) = [x^m] P(n,x), m=0..n-1, with the row polynomials defined by
(Sum_{j=1..n} 1/(1-j*x))*Product_{j=1..n} (1-j*x) (see the comment given above).
Sum_{j=1..n} j^k = Sum_{m=0..n-1} a(n,m)*S2(k+n-m,n), n >= 1, k >= 0, with the Stirling2 triangle A048993.
From Wolfdieter Lang, Oct 12 2011: (Start)
The row polynomial P(n,x) is therefore
Sum_{j=1..n} (Product_{k=1..n omitting k=j} (1-k*x)), n >= 1. This leads to:
a(n,m) = (n-m)*S1(n+1, n+1-m), n-1 >= m >= 0, with the (signed) Stirling1 numbers A048994. For the proof see the link.
(End)
A similar polynomial occurs in the expansion of 1/(n+x)^2 as a series with factorials in the denominator: 1/(n+x)^2 = -Sum_{k>=1} n!/(n+k+1)! * P(k,1/x) x^(k-1). - Matt Majic, Nov 01 2019