A196848 Coefficient array of numerator polynomials of the ordinary generating functions for the alternating sums of powers for the numbers 1,2,...,2*n+1.
1, 1, -4, 5, 1, -12, 55, -114, 94, 1, -24, 238, -1248, 3661, -5736, 3828, 1, -40, 690, -6700, 40053, -151060, 351800, -465000, 270576, 1, -60, 1595, -24720, 247203, -1665900, 7660565, -23745720, 47560876, -55805520, 29400480, 1, -84, 3185, -72030, 1081353, -11344872, 85234175, -461800710, 1790256286, -4843901664, 8693117160, -9320129280, 4546558080
Offset: 0
Examples
n\m 0 1 2 3 4 5 6 7 8 0: 1 1: 1 -4 5 2: 1 -12 55 -114 94 3: 1 -24 238 -1248 3661 -5736 3828 4: 1 -40 690 -6700 40053 -151060 351800 -465000, 270576 ... The o.g.f. for the sequence a(k,5) := (1^k - 2^k + 3^k - 4^k + 5^k) = A198628(k), k >= 0, (n=2) is Go(2,x) = (1 - 12*x + 55*x^2 - 114*x^3 + 94*x^4)/Product_{j=1..5} (1-j*x). a(3,2) = S_{1,2}(5,1) + S_{3,4}(5,1) + S_{5,6}(5,1) + |s(7,5)| = A196845(5,1) + A196846(5,1) + 17 + |s(7,5)| = 25+21+17+175 = 238. Here S_{5,6}(5,1) = 1+2+3+4+7 = 17 was used.
Formula
a(n,m) = [x^m](Go(n,x)*Product_{j=1..2*n+1} (1-j*x)), with the o.g.f. Go(n,x) of the sequence a(k,2*n+1) := Sum_{j=1..2*n+1} (-1)^(j+1) * j^k. See a comment above.
Comments