A197070 Decimal expansion of the Dirichlet eta-function at 3.
9, 0, 1, 5, 4, 2, 6, 7, 7, 3, 6, 9, 6, 9, 5, 7, 1, 4, 0, 4, 9, 8, 0, 3, 6, 2, 1, 1, 3, 3, 5, 8, 7, 4, 9, 3, 0, 7, 3, 7, 3, 9, 7, 1, 9, 2, 5, 5, 3, 7, 4, 1, 6, 1, 3, 4, 4, 2, 0, 3, 6, 6, 6, 5, 0, 6, 3, 7, 8, 6, 5, 4, 3, 3, 9
Offset: 0
Examples
0.9015426773696957140498036211335874930737...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- R. Barbieri, J. A. Mignaco and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864 Table II (4)
- Su Hu, Min-soo Kim, Euler's integral, multiple cosine function and zeta values, arXiv:2201.011247 (2023), series last equation.
- Seán Stewart, Problem 12206, The American Mathematical Monthly, Vol. 127, No. 8 (2020), p. 752.
- Wikipedia, Dirichlet eta function.
Crossrefs
Programs
-
Maple
3*Zeta(3)/4 ; evalf(%) ;
-
Mathematica
RealDigits[3(Zeta[3])/4, 10, 75][[1]] (* Bruno Berselli, Dec 20 2011 *)
-
PARI
-polylog(3,-1) \\ Charles R Greathouse IV, Mar 28 2012
-
PARI
3/4*zeta(3) \\ Charles R Greathouse IV, Mar 28 2012
Formula
Equals 3*zeta(3)/4 = 3*A002117/4.
Also equals the integral over the unit cube [0,1]x[0,1]x[0,1] of 1/(1+x*y*z) dx dy dz. - Jean-François Alcover, Nov 24 2014
Equals Sum_{n>=1} (-1)^(n+1)/n^3. - Terry D. Grant, Aug 03 2016
Equals Sum_{n>=1} AH(2*n)/n^2, where AH(n) = Sum_{k=1..n} (-1)^(k+1)/k = A058313(n)/A058312(n) is the n-th alternating harmonic number (Stewart, 2020). - Amiram Eldar, Oct 04 2021
Equals -int_0^1 log(x)log(1+x)/x dx [Barbieri] - R. J. Mathar, Jun 07 2024
Comments