cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197083 Number of solutions to a+b+c = d+e+f with 0 < a <= n, 0 <= b,c,d,e,f <= n.

Original entry on oeis.org

0, 10, 96, 445, 1431, 3681, 8141, 16142, 29466, 50412, 81862, 127347, 191113, 278187, 394443, 546668, 742628, 991134, 1302108, 1686649, 2157099, 2727109, 3411705, 4227354, 5192030, 6325280, 7648290, 9183951, 10956925, 12993711, 15322711, 17974296, 20980872
Offset: 0

Views

Author

Bobby Milazzo, Mar 11 2013

Keywords

Comments

When n < 10, a(n) is the number of six-digit numbers (with digits <= n) that have the property that the sum of the rightmost 3 digits equals the sum of the leftmost 3 digits. Some references call these balanced numbers. [Edited by M. F. Hasler, Mar 11 2013]

Examples

			When n=1, a(n)=10 because there are 10 solutions when viewed as balanced numbers: 111111, 110110, 110101, 110011, 101110, 101101, 101011, 100100, 100010, 100001.
		

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 10, a[2] == 96, a[3] == 445, a[4] == 1431, a[5] == 3681, a[n] == 6 a[n - 1] - 15 a[n - 2] + 20 a[n - 3] - 15 a[n - 4] + 6 a[n - 5] - a[n - 6]}, a, {n, 0, 35}]
  • Python
    def A197083(n): return n*(n*(n*(n*(66*n+275)+440)+325)+94)//120 # Chai Wah Wu, May 08 2024

Formula

G.f.: (x^4 + 19*x^3 + 36*x^2 + 10*x)/(x-1)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5; a(0)=0, a(1)=10, a(2)=96, a(3)=445, a(4)=1431, a(5)=3681.
a(n) = (66*n^5 + 275*n^4 + 440*n^3 + 325*n^2 + 94*n)/120 = n*(n+1)*(66*n^3 + 209*n^2 + 231*n + 94)/120.