cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A240927 Positive integers with 2k digits (the first of which is not 0) where the sum of the first k digits equals the sum of the last k digits.

Original entry on oeis.org

11, 22, 33, 44, 55, 66, 77, 88, 99, 1001, 1010, 1102, 1111, 1120, 1203, 1212, 1221, 1230, 1304, 1313, 1322, 1331, 1340, 1405, 1414, 1423, 1432, 1441, 1450, 1506, 1515, 1524, 1533, 1542, 1551, 1560, 1607, 1616, 1625, 1634, 1643, 1652, 1661, 1670, 1708, 1717
Offset: 1

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

These integers are sometimes called balanced numbers.
There are 9, 615, 50412, 4379055, 392406145, ... 2k-digit balanced numbers with k >= 1.

Examples

			1423 is a 4-digit balanced number, because the sum of the first 2 digits equals the sum of the last 2 digits: 1 + 4 = 2 + 3.
		

References

  • Cambridge Colleges Sixth Term Examination Papers (STEP) 2007, Paper I, Section A (Pure Mathematics), Nr. 1.

Crossrefs

Programs

  • Mathematica
    sfslQ[n_]:=Module[{id=IntegerDigits[n],len},len=Length[id]/2;Total[Take[ id,len]]==Total[Take[id,-len]]]; Select[Table[Range[10^n,10^(n+1)-1],{n,1,3,2}]// Flatten,sfslQ] (* Harvey P. Dale, Jun 24 2020 *)

A240929 Number of 10-digit positive integers in base n where the sum of the first k digits equals the sum of the last k digits.

Original entry on oeis.org

126, 6046, 88428, 694360, 3705741, 15192604, 51418473, 150420187, 392406145, 933294637, 2056947827, 4253047045, 8329101326, 15566783605, 27934647638, 48371293570, 81155221112, 132379936520, 210555362990, 327359243694, 498565022483, 745175639274, 1094795785319
Offset: 2

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

These integers are sometimes called balanced numbers.

References

  • Cambridge Colleges Sixth Term Examination Papers (STEP) 2007, Paper I, Section A (Pure Mathematics), Nr. 1.

Crossrefs

Programs

  • Python
    def A240929(n): return n*(n*(n*(n*(n*(n*(n*(n*(156190*n-140571)+29400)-30870)+3990)-8379)-3100)-1620)-5040)//362880 # Chai Wah Wu, May 08 2024

Formula

a(n) = n*(n-1)*(156190*n^7 + 15619*n^6 + 45019*n^5 + 14149*n^4 + 18139*n^3 + 9760*n^2 + 6660*n + 5040)/362880
From Chai Wah Wu, May 08 2024: (Start)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 11.
G.f.: x^2*(x^7 + 326*x^6 + 7942*x^5 + 42341*x^4 + 67030*x^3 + 33638*x^2 + 4786*x + 126)/(x - 1)^10. (End)

A240928 Number of 8-digit positive integers in base n where the sum of the first k digits equals the sum of the last k digits.

Original entry on oeis.org

35, 750, 6174, 31025, 114961, 346193, 896876, 2072694, 4379055, 8606312, 15936426, 28073487, 47400509, 77164915, 121695128, 186650684, 279308283, 408886194, 586909430, 827618109, 1148421417, 1570399589, 2118856324, 2823924050, 3721224455, 4852586700
Offset: 2

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

These integers are sometimes called balanced numbers.

References

  • Cambridge Colleges Sixth Term Examination Papers (STEP) 2007, Paper I, Section A (Pure Mathematics), Nr. 1.

Crossrefs

Programs

  • Mathematica
    Table[n(n-1)(1208n^5+151n^4+291n^3+116n^2+88n+60)/2520,{n,2,40}] (* Harvey P. Dale, Mar 18 2022 *)

Formula

a(n) = n*(n-1)*(1208*n^5+151*n^4+291*n^3+116*n^2+88*n+60)/2520.
G.f.: x^2*(x^5+83*x^4+673*x^3+1154*x^2+470*x+35)/(x-1)^8. - Alois P. Heinz, Mar 24 2022

A179441 Number of solutions to a+b+c < d+e with each of a,b,c,d,e in {1..n+1}.

Original entry on oeis.org

1, 21, 121, 432, 1182, 2723, 5558, 10368, 18039, 29689, 46695, 70720, 103740, 148071, 206396, 281792, 377757, 498237, 647653, 830928, 1053514, 1321419, 1641234, 2020160, 2466035, 2987361, 3593331, 4293856, 5099592, 6021967, 7073208, 8266368, 9615353, 11134949, 12840849
Offset: 1

Views

Author

Bobby Milazzo, Jul 14 2010

Keywords

Examples

			a(1) = 1 since from {1,2} there is only one solution: {1,1,1} for a,b,c and {2,2} for d,e.
a(2) = 21 since from {1,2,3} there are 21 ways to select a,b,c,d,e such that a+b+c < d+e.
		

References

  • Mathematics and Computer Education 1988 - 89 #261 Unsolved.

Crossrefs

Cf. A197083.

Programs

  • Mathematica
    k=10;
    Table[p=Expand[Sum[x^k,{k,1,n}]^2 Sum[1/x^k,{k,1,n}]^3];
    Twowins=Drop[CoefficientList[p,x],1]//Total,{n,2,k}]
  • PARI
    a(n)=(27*n^5 + 80*n^4 + 65*n^3 - 20*n^2 - 32*n)/120 \\ Andrew Howroyd, Apr 15 2021

Formula

a(n) = (1/120)*(27*n^5 + 80*n^4 + 65*n^3 - 20*n^2 - 32*n).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6.
G.f.: x*(1 + 15*x + 10*x^2 + x^3)/(1 - x)^6.

Extensions

Name edited and terms a(24) and beyond from Andrew Howroyd, Apr 15 2021
Showing 1-4 of 4 results.