cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A068896 Primes containing 2k digits in which the sum of the first k digits is that of the last k digits.

Original entry on oeis.org

11, 1423, 1607, 1753, 1973, 2011, 2213, 2341, 2543, 2617, 2671, 2819, 2837, 3407, 3461, 3517, 3571, 3719, 3847, 4013, 4637, 4673, 4691, 4729, 4783, 4967, 5023, 5261, 5519, 5573, 5591, 5647, 5683, 5849, 5867, 6143, 6217, 6271, 6473, 6491, 6529, 6547, 7043, 7649, 7759, 8017, 8053, 8219, 8237, 8273, 8291, 8329, 8677, 9137, 9173, 9283, 9467
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2002

Keywords

Examples

			2341 is a member with 2+3 = 4+1.
		

Crossrefs

Cf. A240927.

Programs

  • Mathematica
    Select[Prime[Range[169,1229]],Length[Union[Total/@TakeDrop[ IntegerDigits[ #],2]]] == 1&] (* The program generates all 56 4-digit terms. To generate all 3669 of the 6-digit terms, change the Range constants to (9593, 78498) and change the 2 to 3. *) (* Harvey P. Dale, Aug 15 2021 *)
  • Python
    from sympy import primerange
    def sd(s): return sum(map(int, s))
    def auptod(digits):
        alst = []
        for d in range(2, digits+1, 2):
            for p in primerange(10**(d-1), 10**d):
                s = str(p)
                if sd(s[:len(s)//2]) == sd(s[len(s)//2:]): alst.append(p)
        return alst
    print(auptod(4)) # Michael S. Branicky, Aug 15 2021

Extensions

Corrected and extended by Harvey P. Dale, Aug 15 2021
11 prepended by David A. Corneth, Aug 15 2021

A068898 Triangular numbers containing 2k digits in which the sum of the first k digits = that of the rest.

Original entry on oeis.org

55, 66, 2415, 3003, 5050, 5151, 5995, 8778, 9045, 113050, 138075, 171405, 174345, 177906, 183921, 198765, 203203, 216153, 219453, 234270, 237705, 239086, 252405, 255255, 266815, 267546, 275653, 279378, 284635, 293761, 294528, 306153, 309291, 329266, 348195
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2002

Keywords

Examples

			2415 is a term with 2+4 = 1+5.
		

Crossrefs

Intersection of A000217 and A240927.

Programs

  • Mathematica
    dsQ[n_]:=Module[{idn=IntegerDigits[n],len=IntegerLength[n]/2}, Total[Take[ idn,len]] ==Total[ Take[idn,-len]]]; Select[Flatten[ Table[Table[(n(n+1))/2,{n,Ceiling[(Sqrt[8 10^i+1]-1)/2],Floor[ (Sqrt[8 10^(i+1)+1]-1)/2]}],{i,1,5,2}]],dsQ] (* Harvey P. Dale, Sep 29 2011 *)

Extensions

Corrected and extended by Harvey P. Dale, Sep 29 2011
Offset changed by Andrew Howroyd, Sep 21 2024

A240929 Number of 10-digit positive integers in base n where the sum of the first k digits equals the sum of the last k digits.

Original entry on oeis.org

126, 6046, 88428, 694360, 3705741, 15192604, 51418473, 150420187, 392406145, 933294637, 2056947827, 4253047045, 8329101326, 15566783605, 27934647638, 48371293570, 81155221112, 132379936520, 210555362990, 327359243694, 498565022483, 745175639274, 1094795785319
Offset: 2

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

These integers are sometimes called balanced numbers.

References

  • Cambridge Colleges Sixth Term Examination Papers (STEP) 2007, Paper I, Section A (Pure Mathematics), Nr. 1.

Crossrefs

Programs

  • Python
    def A240929(n): return n*(n*(n*(n*(n*(n*(n*(n*(156190*n-140571)+29400)-30870)+3990)-8379)-3100)-1620)-5040)//362880 # Chai Wah Wu, May 08 2024

Formula

a(n) = n*(n-1)*(156190*n^7 + 15619*n^6 + 45019*n^5 + 14149*n^4 + 18139*n^3 + 9760*n^2 + 6660*n + 5040)/362880
From Chai Wah Wu, May 08 2024: (Start)
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n > 11.
G.f.: x^2*(x^7 + 326*x^6 + 7942*x^5 + 42341*x^4 + 67030*x^3 + 33638*x^2 + 4786*x + 126)/(x - 1)^10. (End)

A068897 Squares containing 2k digits in which the sum of the first k digits = that of the rest.

Original entry on oeis.org

5041, 108900, 122500, 128164, 137641, 155236, 173056, 185761, 203401, 206116, 216225, 287296, 288369, 302500, 324900, 342225, 368449, 423801, 434281, 459684, 485809, 515524, 531441, 540225, 675684, 698896, 720801, 737881, 749956, 779689
Offset: 1

Views

Author

Amarnath Murthy, Mar 21 2002

Keywords

Examples

			5041 is a member with 5+0 = 4+1.
		

Crossrefs

Intersection of A000290 and A240927.

Programs

  • PARI
    isok(n)={my(d=digits(n)); my(k=#d); k%2==0 && vecsum(d[1..k/2]) == vecsum(d[k/2+1..k])}
    lista(n)={my(L=List(), k=0); while(#LAndrew Howroyd, Sep 19 2024

Extensions

Corrected and extended by Harvey P. Dale, Mar 31 2002
Offset changed by Andrew Howroyd, Sep 19 2024

A240928 Number of 8-digit positive integers in base n where the sum of the first k digits equals the sum of the last k digits.

Original entry on oeis.org

35, 750, 6174, 31025, 114961, 346193, 896876, 2072694, 4379055, 8606312, 15936426, 28073487, 47400509, 77164915, 121695128, 186650684, 279308283, 408886194, 586909430, 827618109, 1148421417, 1570399589, 2118856324, 2823924050, 3721224455, 4852586700
Offset: 2

Views

Author

Martin Renner, Aug 03 2014

Keywords

Comments

These integers are sometimes called balanced numbers.

References

  • Cambridge Colleges Sixth Term Examination Papers (STEP) 2007, Paper I, Section A (Pure Mathematics), Nr. 1.

Crossrefs

Programs

  • Mathematica
    Table[n(n-1)(1208n^5+151n^4+291n^3+116n^2+88n+60)/2520,{n,2,40}] (* Harvey P. Dale, Mar 18 2022 *)

Formula

a(n) = n*(n-1)*(1208*n^5+151*n^4+291*n^3+116*n^2+88*n+60)/2520.
G.f.: x^2*(x^5+83*x^4+673*x^3+1154*x^2+470*x+35)/(x-1)^8. - Alois P. Heinz, Mar 24 2022
Showing 1-5 of 5 results.