cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bobby Milazzo

Bobby Milazzo's wiki page.

Bobby Milazzo has authored 2 sequences.

A197083 Number of solutions to a+b+c = d+e+f with 0 < a <= n, 0 <= b,c,d,e,f <= n.

Original entry on oeis.org

0, 10, 96, 445, 1431, 3681, 8141, 16142, 29466, 50412, 81862, 127347, 191113, 278187, 394443, 546668, 742628, 991134, 1302108, 1686649, 2157099, 2727109, 3411705, 4227354, 5192030, 6325280, 7648290, 9183951, 10956925, 12993711, 15322711, 17974296, 20980872
Offset: 0

Author

Bobby Milazzo, Mar 11 2013

Keywords

Comments

When n < 10, a(n) is the number of six-digit numbers (with digits <= n) that have the property that the sum of the rightmost 3 digits equals the sum of the leftmost 3 digits. Some references call these balanced numbers. [Edited by M. F. Hasler, Mar 11 2013]

Examples

			When n=1, a(n)=10 because there are 10 solutions when viewed as balanced numbers: 111111, 110110, 110101, 110011, 101110, 101101, 101011, 100100, 100010, 100001.
		

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 0, a[1] == 10, a[2] == 96, a[3] == 445, a[4] == 1431, a[5] == 3681, a[n] == 6 a[n - 1] - 15 a[n - 2] + 20 a[n - 3] - 15 a[n - 4] + 6 a[n - 5] - a[n - 6]}, a, {n, 0, 35}]
  • Python
    def A197083(n): return n*(n*(n*(n*(66*n+275)+440)+325)+94)//120 # Chai Wah Wu, May 08 2024

Formula

G.f.: (x^4 + 19*x^3 + 36*x^2 + 10*x)/(x-1)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5; a(0)=0, a(1)=10, a(2)=96, a(3)=445, a(4)=1431, a(5)=3681.
a(n) = (66*n^5 + 275*n^4 + 440*n^3 + 325*n^2 + 94*n)/120 = n*(n+1)*(66*n^3 + 209*n^2 + 231*n + 94)/120.

A179441 Number of solutions to a+b+c < d+e with each of a,b,c,d,e in {1..n+1}.

Original entry on oeis.org

1, 21, 121, 432, 1182, 2723, 5558, 10368, 18039, 29689, 46695, 70720, 103740, 148071, 206396, 281792, 377757, 498237, 647653, 830928, 1053514, 1321419, 1641234, 2020160, 2466035, 2987361, 3593331, 4293856, 5099592, 6021967, 7073208, 8266368, 9615353, 11134949, 12840849
Offset: 1

Author

Bobby Milazzo, Jul 14 2010

Keywords

Examples

			a(1) = 1 since from {1,2} there is only one solution: {1,1,1} for a,b,c and {2,2} for d,e.
a(2) = 21 since from {1,2,3} there are 21 ways to select a,b,c,d,e such that a+b+c < d+e.
		

References

  • Mathematics and Computer Education 1988 - 89 #261 Unsolved.

Crossrefs

Cf. A197083.

Programs

  • Mathematica
    k=10;
    Table[p=Expand[Sum[x^k,{k,1,n}]^2 Sum[1/x^k,{k,1,n}]^3];
    Twowins=Drop[CoefficientList[p,x],1]//Total,{n,2,k}]
  • PARI
    a(n)=(27*n^5 + 80*n^4 + 65*n^3 - 20*n^2 - 32*n)/120 \\ Andrew Howroyd, Apr 15 2021

Formula

a(n) = (1/120)*(27*n^5 + 80*n^4 + 65*n^3 - 20*n^2 - 32*n).
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 6.
G.f.: x*(1 + 15*x + 10*x^2 + x^3)/(1 - x)^6.

Extensions

Name edited and terms a(24) and beyond from Andrew Howroyd, Apr 15 2021