cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197125 Numbers such that sum of digits and sum of the square of digits are both a square.

Original entry on oeis.org

1, 4, 9, 10, 40, 90, 100, 400, 900, 1000, 1111, 1177, 1224, 1242, 1339, 1393, 1422, 1717, 1771, 1933, 2124, 2142, 2214, 2241, 2412, 2421, 3139, 3193, 3319, 3391, 3913, 3931, 4000, 4122, 4212, 4221, 4444, 4588, 4669, 4696, 4858, 4885, 4966, 5488, 5848, 5884
Offset: 1

Views

Author

Michel Lagneau, Oct 10 2011

Keywords

Comments

The sequence contains a majority of numbers with two identical digits at least, but there exists a finite subset A = {1, 4, 9, 10, 40, 90, 156789, 156798, ..., 9876510} of 7!+6 = 5046 numbers with distinct decimal digits. The numbers > 90 of A are all permutations of 1567890.

Examples

			597618 is in the sequence because :
5+9+7+6+1+8 = 36 = 6^2 ;
5^2+9^2+7^2+6^2+1^2+8^2 = 256 = 16^2.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 6000 do:l:=evalf(floor(ilog10(n))+1):n0:=n:s1:=0:s2:=0:for m from 1 to l do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10): n0:=v :s1:=s1+u:s2:=s2+u^2: od:if sqrt(s1)=floor(sqrt(s1)) and sqrt(s2)=floor(sqrt(s2)) then printf(`%d, `, n): else fi:od:
  • Mathematica
    sdQ[n_]:=Module[{idn=IntegerDigits[n]},IntegerQ[Sqrt[Total[idn]]] && IntegerQ[Sqrt[Total[idn^2]]]]; Select[Range[6000],sdQ] (* Harvey P. Dale, Oct 25 2011 *)

Formula

a(n) = {A028839} intersection {A175396}.