A197126 Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of cliques of size k in all partitions of n.
1, 1, 1, 3, 0, 1, 4, 2, 0, 1, 8, 2, 1, 0, 1, 11, 4, 2, 1, 0, 1, 19, 5, 3, 1, 1, 0, 1, 26, 10, 3, 3, 1, 1, 0, 1, 41, 11, 7, 3, 2, 1, 1, 0, 1, 56, 20, 8, 5, 3, 2, 1, 1, 0, 1, 83, 25, 13, 6, 5, 2, 2, 1, 1, 0, 1, 112, 38, 17, 11, 5, 5, 2, 2, 1, 1, 0, 1, 160, 49, 25, 13, 9, 5, 4, 2, 2, 1, 1, 0, 1
Offset: 1
Examples
T(4,1) = 4: [1,1,(2)], [(1),(3)], [(4)]. T(8,3) = 3: [1,1,(2,2,2)], [(1,1,1),2,3], [(1,1,1),5]. T(12,4) = 11: [(1,1,1,1),(2,2,2,2)], [1,(2,2,2,2),3], [(1,1,1,1),2,3,3], [(3,3,3,3)], [(1,1,1,1),2,2,4], [(2,2,2,2),4], [(1,1,1,1),4,4], [(1,1,1,1),3,5], [(1,1,1,1),2,6], [(1,1,1,1),8]. Here the first partition contains 2 cliques. Triangle begins: 1; 1, 1; 3, 0, 1; 4, 2, 0, 1; 8, 2, 1, 0, 1; 11, 4, 2, 1, 0, 1; 19, 5, 3, 1, 1, 0, 1; 26, 10, 3, 3, 1, 1, 0, 1; ...
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Abdulaziz M. Alanazi and Augustine O. Munagi, On partition configurations of Andrews-Deutsch, Integers 17 (2017), #A7.
Crossrefs
Programs
-
Maple
b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0], add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p))) end: T:= (n, k)-> b(n, n, k)[2]: seq(seq(T(n, k), k=1..n), n=1..20);
-
Mathematica
Table[CoefficientList[ 1/q* Tr[Flatten[q^Map[Length, Split /@ IntegerPartitions[n], {2}]]], q], {n, 24}] (* Wouter Meeussen, Apr 21 2012 *) b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m == k, l + {0, l[[1]]}, l]][b[n - p*m, p - 1, k]], {m, 0, n/p}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Formula
G.f. of column k: (x^k/(1-x^k)-x^(k+1)/(1-x^(k+1)))/Product_{j>0}(1-x^j).
Column k is asymptotic to exp(Pi*sqrt(2*n/3)) / (k*(k+1)*Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, May 24 2018
Comments