A116646
Number of doubletons in all partitions of n. By a doubleton in a partition we mean an occurrence of a part exactly twice (the partition [4,(3,3),2,2,2,(1,1)] has two doubletons, shown between parentheses).
Original entry on oeis.org
0, 0, 1, 0, 2, 2, 4, 5, 10, 11, 20, 25, 38, 49, 73, 91, 131, 167, 228, 291, 392, 493, 653, 822, 1065, 1336, 1714, 2131, 2706, 3354, 4209, 5193, 6471, 7934, 9817, 11990, 14725, 17909, 21875, 26477, 32172, 38797, 46893, 56339, 67804, 81147, 97260, 116017
Offset: 0
a(6) = 4 because in the partitions of 6, namely [6],[5,1],[4,2],[4,(1,1)],[(3,3)],[3,2,1],[3,1,1,1],[2,2,2],[(2,2),(1,1)],[2,1,1,1,1] and [1,1,1,1,1,1], we have a total of 4 doubletons (shown between parentheses).
-
f:= x^2/(1+x)/(1-x^3)/product(1-x^j, j=1..70): fser:= series(f,x=0,70): seq(coeff(fser,x,n), n=0..55);
-
nmax = 50; CoefficientList[Series[x^2/((1+x)*(1-x^3)) * Product[1/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
Table[Sum[PartitionsP[n-6*m-2] - PartitionsP[n-6*m-3] + PartitionsP[n-6*m-4], {m, 0, Floor[n/6]}], {n, 0, 50}] (* Vaclav Kotesovec, Mar 07 2016 *)
A117524
Total number of parts of multiplicity 3 in all partitions of n.
Original entry on oeis.org
0, 0, 1, 0, 1, 2, 3, 3, 7, 8, 13, 17, 25, 32, 48, 59, 83, 108, 145, 183, 247, 310, 406, 512, 659, 824, 1055, 1307, 1651, 2047, 2558, 3146, 3913, 4788, 5904, 7202, 8821, 10707, 13054, 15770, 19118, 23027, 27775, 33312, 40029, 47835, 57231, 68182, 81261
Offset: 1
a(9) = 7 because among the 30 (=A000041(9)) partitions of 9 only [6,(1,1,1)],[4,2,(1,1,1)],[(3,3,3)],[3,3,(1,1,1)],[3,(2,2,2)],[(2,2,2),(1,1,1)] contain parts of multiplicity 3 and their total number is 7 (shown between parentheses)
-
g:=(x^3/(1-x^3)-x^4/(1-x^4))/product(1-x^i,i=1..65): gser:=series(g,x=0,62): seq(coeff(gser,x,n),n=1..58); # Emeric Deutsch, Apr 29 2006
A299779
Triangle read by rows: T(n,k) is the total number of cliques of size k in all partitions of all positive integers <= n.
Original entry on oeis.org
1, 2, 1, 5, 1, 1, 9, 3, 1, 1, 17, 5, 2, 1, 1, 28, 9, 4, 2, 1, 1, 47, 14, 7, 3, 2, 1, 1, 73, 24, 10, 6, 3, 2, 1, 1, 114, 35, 17, 9, 5, 3, 2, 1, 1, 170, 55, 25, 14, 8, 5, 3, 2, 1, 1, 253, 80, 38, 20, 13, 7, 5, 3, 2, 1, 1, 365, 118, 55, 31, 18, 12, 7, 5, 3, 2, 1, 1, 525, 167, 80, 44, 27, 17, 11, 7, 5, 3, 2, 1, 1
Offset: 1
Triangle begins:
1;
2, 1;
5, 1, 1;
9, 3, 1, 1;
17, 5, 2, 1, 1;
28, 9, 4, 2, 1, 1;
47, 14, 7, 3, 2, 1, 1;
73, 24, 10, 6, 3, 2, 1, 1;
114, 35, 17, 9, 5, 3, 2, 1, 1;
170, 55, 25, 14, 8, 5, 3, 2, 1, 1;
253, 80, 38, 20, 13, 7, 5, 3, 2, 1, 1;
365, 118, 55, 31, 18, 12, 7, 5, 3, 2, 1, 1;
525, 167, 80, 44, 27, 17, 11, 7, 5, 3, 2, 1, 1;
...
-
b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=k, l+[0, l[1]], l))(b(n-p*m, p-1, k)), m=0..n/p)))
end:
T:= proc(n, k) option remember;
b(n$2, k)[2]+`if`(nAlois P. Heinz, Apr 27 2018
-
b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m==k, l+{0, l[[1]]}, l]][b[n-p*m, p-1, k]], {m, 0, n/p}]]];
T[n_, k_] := b[n, n, k][[2]] + If[n < k, 0, T[n-1, k]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
A213180
Sum over all partitions lambda of n of Sum_{p:lambda} p^m(p,lambda), where m(p,lambda) is the multiplicity of part p in lambda.
Original entry on oeis.org
0, 1, 3, 7, 16, 28, 59, 91, 170, 269, 450, 655, 1162, 1602, 2527, 3793, 5805, 8034, 12660, 17131, 26484, 37384, 53738, 73504, 114683, 153613, 221225, 313339, 453769, 609179, 927968, 1223909, 1804710, 2522264, 3539835, 4855420, 7439870, 9765555, 14009545
Offset: 0
a(6) = 59: (1^6) + (2+1^4) + (2^2+1^2) + (2^3) + (3+1^3) + (3+2+1) + (3^2) + (4+1^2) + (4+2) + (5+1) + (6) = 1+3+5+8+4+6+9+5+6+6+6 = 59.
Cf.
A000070 (Sum 1),
A006128 (Sum m),
A014153 (Sum p),
A024786 (Sum floor(1/m)),
A066183 (Sum p^2*m),
A066186 (Sum p*m),
A073336 (Sum floor(m/p)),
A116646 (Sum delta(m,2)),
A117524 (Sum delta(m,3)),
A103628 (Sum delta(m,1)*p),
A117525 (Sum delta(m,2)*p),
A197126,
A213191.
-
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=0, l, l+[0, l[1]*p^m]))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..40);
-
b[n_, p_] := b[n, p] = If[n==0, {1, 0}, If[p<1, {0, 0}, Sum[Function[l, If[m==0, l, l+{0, l[[1]]*p^m}]][b[n-p*m, p-1]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)
A222704
Total number of parts of multiplicity 4 in all partitions of n.
Original entry on oeis.org
1, 0, 1, 1, 3, 3, 5, 6, 11, 13, 20, 24, 37, 45, 64, 80, 110, 137, 184, 229, 303, 375, 486, 602, 772, 951, 1202, 1478, 1853, 2267, 2817, 3432, 4236, 5142, 6300, 7620, 9284, 11185, 13553, 16273, 19625, 23478, 28187, 33613, 40192, 47778, 56904, 67443, 80051
Offset: 4
-
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=4, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=4..60);
-
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p<1, {0, 0}, Sum[Function[l, If[m == 4, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 4, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A222705
Total number of parts of multiplicity 5 in all partitions of n.
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 5, 5, 9, 11, 17, 21, 31, 37, 53, 67, 90, 113, 151, 186, 246, 305, 392, 486, 620, 762, 962, 1181, 1473, 1802, 2235, 2716, 3345, 4056, 4956, 5990, 7283, 8759, 10598, 12709, 15297, 18283, 21917, 26099, 31165, 37009, 44014, 52113, 61776, 72918
Offset: 5
-
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=5, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=5..60);
-
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 5, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 5, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A222706
Total number of parts of multiplicity 6 in all partitions of n.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 5, 5, 8, 10, 15, 18, 28, 33, 47, 58, 79, 97, 132, 161, 212, 262, 337, 414, 531, 648, 818, 1001, 1249, 1519, 1887, 2285, 2812, 3401, 4155, 5004, 6086, 7301, 8827, 10565, 12708, 15155, 18162, 21587, 25757, 30539, 36296, 42904, 50832, 59915
Offset: 6
-
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=6, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=6..60);
-
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 6, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 6, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A222707
Total number of parts of multiplicity 7 in all partitions of n.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 5, 8, 9, 14, 17, 25, 30, 43, 53, 72, 88, 118, 145, 190, 234, 301, 370, 471, 575, 724, 884, 1102, 1339, 1657, 2007, 2465, 2975, 3630, 4369, 5301, 6355, 7672, 9171, 11018, 13126, 15706, 18655, 22231, 26329, 31260, 36920, 43688, 51454, 60693
Offset: 7
-
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=7, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=7..60);
-
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 7, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 7, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A222708
Total number of parts of multiplicity 8 in all partitions of n.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 8, 9, 13, 16, 24, 28, 40, 49, 67, 82, 110, 133, 176, 215, 276, 338, 432, 524, 661, 804, 1001, 1214, 1502, 1812, 2228, 2683, 3270, 3928, 4766, 5699, 6879, 8208, 9855, 11724, 14020, 16624, 19804, 23423, 27788, 32781, 38770, 45603, 53762
Offset: 8
-
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=8, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=8..60);
-
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 8, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 8, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
A222709
Total number of parts of multiplicity 9 in all partitions of n.
Original entry on oeis.org
1, 0, 1, 1, 2, 2, 4, 4, 7, 9, 13, 15, 23, 27, 38, 47, 63, 77, 104, 126, 165, 202, 259, 316, 403, 489, 614, 748, 929, 1125, 1391, 1676, 2055, 2475, 3012, 3613, 4379, 5233, 6306, 7521, 9018, 10717, 12805, 15171, 18050, 21337, 25288, 29806, 35221, 41400, 48760
Offset: 9
-
b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
add((l->`if`(m=9, l+[0, l[1]], l))(b(n-p*m, p-1)), m=0..n/p)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=9..60);
-
b[n_, p_] := b[n, p] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 9, l + {0, l[[1]]}, l]][b[n - p*m, p - 1]], {m, 0, n/p}]]];
a[n_] := b[n, n][[2]];
Table[a[n], {n, 9, 60}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)
Showing 1-10 of 12 results.
Comments