cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A197131 Sum of the reflection (absolute) lengths of all elements in the Coxeter group of type D_n.

Original entry on oeis.org

4, 46, 544, 7216, 108096, 1816704, 33951744, 699512832, 15765626880, 386046443520, 10208951009280, 290039357767680, 8811722692362240, 285113464809062400, 9789232245217689600, 355501479519741542400, 13615286053738276454400, 548476851979845579571200
Offset: 2

Views

Author

Cathy Kriloff, Oct 10 2011

Keywords

Examples

			a(3)=46 because W(D_3)=W(A_3) and in sequence A067318, a(3)=46.
		

References

  • P. Renteln, The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., 311 (2011), 738-755.

Crossrefs

Programs

  • Maple
    seq(2^(n-1)*factorial(n)*(add((2*k-1)/(2*k), k=1..n-1)+(n-1)/n), n=2..100);
  • Mathematica
    Table[2^(n-1)*Factorial[n]*(Sum[(2*k-1)/(2*k),{k,1,n-1}]+(n-1)/n), {n,2,100}]
  • Sage
    [2^(n-1)*factorial(n)*(sum([(2*k-1)/(2*k) for k in [1..n-1]])+(n-1)/n) for n in [2..100]]

Formula

a(n)=Sum_{w in W(D_n)} l_T(w)=|W(D_n)|Sum_{i=1}^n (d_i-1)/d_i=2^(n-1)*n!*(1/2+3/4+...+(2n-3)/(2n-2)+(n-1)/n) where T=all reflections in W(D_n), l_T(1)=0 and otherwise l_T(w)=min{k|w=t_1*...*t_k for t_i in T}, and d_1,...,d_n are the degrees of W(D_n)
Showing 1-1 of 1 results.