cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Cathy Kriloff

Cathy Kriloff's wiki page.

Cathy Kriloff has authored 2 sequences.

A197130 Sum of reflection (or absolute) lengths of all elements in the Coxeter group of type B_n.

Original entry on oeis.org

1, 10, 100, 1136, 14816, 220032, 3679488, 68548608, 1409347584, 31717048320, 775808778240, 20499651624960, 582040706088960, 17674457139118080, 571655258741145600, 19621314364126003200, 712374154997583052800, 27277192770051951820800
Offset: 1

Author

Cathy Kriloff, Oct 10 2011

Keywords

Examples

			a(2)=10 since W(B_2)={1, t_1=s_1, t_2=s_2, t_3=s_1*s_2*s_1, t_4=s_2*s_1*s_2, t_1*t_2=s_1*s_2, t_2*t_1=s_2*s_1, t_1*t_4=s_1*s_2*s_1*s_2} in terms of simple reflections s_1 and s_2.
		

References

  • P. Renteln, The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., 311 (2011), 738-755.

Crossrefs

Programs

  • Maple
    seq(2^n*factorial(n)*add((2*k-1)/(2*k),k=1..n),n=1..100);
  • Mathematica
    Table[2^n*Factorial[n]*Sum[(2*k-1)/(2*k),{k,1,n}],{n,1,100}]
  • Sage
    [2^n*factorial(n)*sum([(2*k-1)/(2*k) for k in [1..n]]) for n in [1..100]]

Formula

a(n)=Sum_{w in W(B_n)} l_T(w)=|W(B_n)|Sum_{i=1}^n (d_i-1)/d_i=2^n*n!*(1/2+3/4+...+(2n-1)/(2n)) where T=all reflections in W(B_n), l_T(1)=0 and otherwise l_T(w)=min{k|w=t_1*...*t_k for t_i in T}, and d_1,...,d_n are the degrees of W(B_n)

A197131 Sum of the reflection (absolute) lengths of all elements in the Coxeter group of type D_n.

Original entry on oeis.org

4, 46, 544, 7216, 108096, 1816704, 33951744, 699512832, 15765626880, 386046443520, 10208951009280, 290039357767680, 8811722692362240, 285113464809062400, 9789232245217689600, 355501479519741542400, 13615286053738276454400, 548476851979845579571200
Offset: 2

Author

Cathy Kriloff, Oct 10 2011

Keywords

Examples

			a(3)=46 because W(D_3)=W(A_3) and in sequence A067318, a(3)=46.
		

References

  • P. Renteln, The distance spectra of Cayley graphs of Coxeter groups, Discrete Math., 311 (2011), 738-755.

Crossrefs

Programs

  • Maple
    seq(2^(n-1)*factorial(n)*(add((2*k-1)/(2*k), k=1..n-1)+(n-1)/n), n=2..100);
  • Mathematica
    Table[2^(n-1)*Factorial[n]*(Sum[(2*k-1)/(2*k),{k,1,n-1}]+(n-1)/n), {n,2,100}]
  • Sage
    [2^(n-1)*factorial(n)*(sum([(2*k-1)/(2*k) for k in [1..n-1]])+(n-1)/n) for n in [2..100]]

Formula

a(n)=Sum_{w in W(D_n)} l_T(w)=|W(D_n)|Sum_{i=1}^n (d_i-1)/d_i=2^(n-1)*n!*(1/2+3/4+...+(2n-3)/(2n-2)+(n-1)/n) where T=all reflections in W(D_n), l_T(1)=0 and otherwise l_T(w)=min{k|w=t_1*...*t_k for t_i in T}, and d_1,...,d_n are the degrees of W(D_n)