cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197189 a(n) = 3*a(n-1) + 5*a(n-2), with a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 11, 43, 184, 767, 3221, 13498, 56599, 237287, 994856, 4171003, 17487289, 73316882, 307387091, 1288745683, 5403172504, 22653245927, 94975600301, 398193030538, 1669457093119, 6999336432047, 29345294761736, 123032566445443, 515824173145009, 2162635351662242
Offset: 0

Views

Author

Bruno Berselli, Oct 11 2011

Keywords

Crossrefs

Cf. for type of recurrence: A015523, A072263, A072264, A152187, A179606 and also A180140.

Programs

  • Magma
    [n le 2 select n else 3*Self(n-1)+5*Self(n-2): n in [1..26]];
  • Mathematica
    a = {1, 2}; Do[AppendTo[a, 3 a[[-1]] + 5 a[[-2]]], {24}]; a (* Bruno Berselli, Dec 26 2012 *)
  • PARI
    v=vector(26); v[1]=1; v[2]=2; for(i=3, #v, v[i]=3*v[i-1]+5*v[i-2]); v
    

Formula

G.f.: (1-x)/(1-3*x-5*x^2).
a(n) = ((29+sqrt(29))*(3+sqrt(29))^n+(29-sqrt(29))*(3-sqrt(29))^n)/(58*2^n).
a(n) = A015523(n+1)-A015523(n).
G.f.: G(0)*(1-x)/(2-3*x), where G(k)= 1 + 1/(1 - x*(29*k-9)/(x*(29*k+20) - 6/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 17 2013