A197321 a(n) = binomial(n+10, 10)*8^n.
1, 88, 4224, 146432, 4100096, 98402304, 2099249152, 40785412096, 734137417728, 12398765277184, 198380244434944, 3029807369551872, 44437174753427456, 628956934971588608, 8625695108181786624, 115009268109090488320, 1495120485418176348160, 18996824991195652423680
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (88,-3520,84480,-1351680,15138816,-121110528,692060160,-2768240640,7381975040,-11811160064,8589934592).
Programs
-
Magma
[8^n*Binomial(n+10, 10): n in [0..20]]
-
Mathematica
Table[Binomial[n+10,10]8^n,{n,0,20}] (* Harvey P. Dale, Mar 05 2012 *)
Formula
a(n) = 8^n*C(n+10, 10).
G.f.: 1/(1-8*x)^11.
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=0} 1/a(n) = 3879700814/9 - 3228288560*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 30993639120*log(9/8) - 229983068738/63. (End)