A197433 Sum of distinct Catalan numbers: a(n) = Sum_{k>=0} A030308(n,k)*C(k+1) where C(n) is the n-th Catalan number (A000108). (C(0) and C(1) not treated as distinct.)
0, 1, 2, 3, 5, 6, 7, 8, 14, 15, 16, 17, 19, 20, 21, 22, 42, 43, 44, 45, 47, 48, 49, 50, 56, 57, 58, 59, 61, 62, 63, 64, 132, 133, 134, 135, 137, 138, 139, 140, 146, 147, 148, 149, 151, 152, 153, 154, 174, 175, 176, 177, 179, 180, 181, 182, 188, 189, 190, 191, 193, 194, 195, 196
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8191
Crossrefs
Programs
-
Mathematica
nmax = 63; a[n_] := If[n == 0, 0, SeriesCoefficient[(1/(1-x))*Sum[CatalanNumber[k+1]* x^(2^k)/(1 + x^(2^k)), {k, 0, Log[2, n] // Ceiling}], {x, 0, n}]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Nov 18 2021, after Ilya Gutkovskiy *)
Formula
For all n, A244230(a(n)) = n. - Antti Karttunen, Jul 18 2014
G.f.: (1/(1 - x))*Sum_{k>=0} Catalan number(k+1)*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jul 23 2017
Extensions
Name clarified by Antti Karttunen, Jul 18 2014
Comments