cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197366 Number of Abelian groups of order 2n which are isomorphic with the group of units of the ring Z/kZ for some k.

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 0, 3, 1, 2, 1, 2, 0, 1, 1, 4, 0, 3, 0, 3, 1, 1, 1, 3, 0, 1, 1, 1, 1, 2, 0, 5, 1, 0, 1, 5, 0, 0, 1, 3, 1, 1, 0, 3, 0, 1, 0, 5, 0, 1, 1, 1, 1, 3, 1, 3, 0, 1, 0, 2, 0, 0, 1, 5, 1, 1, 0, 1, 1, 1, 0, 6, 0, 1, 1, 0, 0, 2, 0, 5, 1, 1, 1, 2, 0, 1
Offset: 1

Views

Author

Artur Jasinski, Oct 14 2011

Keywords

Crossrefs

Programs

  • GAP
    B:=[]; LoadPackage("sonata");
    for m in [1..86] do
        n := 2*m; S:=[];
        for i in DivisorsInt(n)+1 do
            if IsPrime(i)=true then
                S:=Concatenation(S,[i]);
            fi;
        od;
        T:=[];
        for k in [1..Size(S)] do
            T:=Concatenation(T,[S[k]/(S[k]-1)]);
        od;
        max := n*Product(T); R:=[];
        for r in [1..Int(max)] do
            if Phi(r)=n then
                R:=Concatenation(R,[r]);
            fi;
        od;
        A:=[];
        for t in [1..NrSmallGroups(n)] do
            if IsAbelian(SmallGroup(n,t))=true then
                A:=Concatenation(A,[SmallGroup(n,t)]);
            fi;
        od;
        U:=[];
        for s in [1..Size(R)] do
            U:=Concatenation(U,[Units(Integers mod R[s])]);
        od;
        V:=[];
        for v in [1..Size(A)] do
            for w in [1..Size(U)] do
                if IsIsomorphicGroup(A[v],U[w])=true then
                    V:=Concatenation(V,[v]);
                    break;
                fi;
            od;
        od;
        B:=Concatenation(B,[Size(V)]);
    od;
    Print(B); # Miles Englezou, Oct 22 2024

Formula

a(n) = A101872(n) - A179229(n).

Extensions

Name corrected by Andrey Zabolotskiy, Oct 21 2024
Terms a(17) onwards from Miles Englezou, Oct 22 2024