A197366 Number of Abelian groups of order 2n which are isomorphic with the group of units of the ring Z/kZ for some k.
1, 2, 1, 2, 1, 2, 0, 3, 1, 2, 1, 2, 0, 1, 1, 4, 0, 3, 0, 3, 1, 1, 1, 3, 0, 1, 1, 1, 1, 2, 0, 5, 1, 0, 1, 5, 0, 0, 1, 3, 1, 1, 0, 3, 0, 1, 0, 5, 0, 1, 1, 1, 1, 3, 1, 3, 0, 1, 0, 2, 0, 0, 1, 5, 1, 1, 0, 1, 1, 1, 0, 6, 0, 1, 1, 0, 0, 2, 0, 5, 1, 1, 1, 2, 0, 1
Offset: 1
Keywords
Programs
-
GAP
B:=[]; LoadPackage("sonata"); for m in [1..86] do n := 2*m; S:=[]; for i in DivisorsInt(n)+1 do if IsPrime(i)=true then S:=Concatenation(S,[i]); fi; od; T:=[]; for k in [1..Size(S)] do T:=Concatenation(T,[S[k]/(S[k]-1)]); od; max := n*Product(T); R:=[]; for r in [1..Int(max)] do if Phi(r)=n then R:=Concatenation(R,[r]); fi; od; A:=[]; for t in [1..NrSmallGroups(n)] do if IsAbelian(SmallGroup(n,t))=true then A:=Concatenation(A,[SmallGroup(n,t)]); fi; od; U:=[]; for s in [1..Size(R)] do U:=Concatenation(U,[Units(Integers mod R[s])]); od; V:=[]; for v in [1..Size(A)] do for w in [1..Size(U)] do if IsIsomorphicGroup(A[v],U[w])=true then V:=Concatenation(V,[v]); break; fi; od; od; B:=Concatenation(B,[Size(V)]); od; Print(B); # Miles Englezou, Oct 22 2024
Extensions
Name corrected by Andrey Zabolotskiy, Oct 21 2024
Terms a(17) onwards from Miles Englezou, Oct 22 2024