A197505 Exponential transform of A006125.
1, 1, 3, 15, 121, 1665, 43883, 2437423, 289320049, 71423435521, 35912764315347, 36427941634714575, 74226534887938021609, 303199273967377493113473, 2480131664037469755458069819, 40602053121132407513785975382767, 1329877926764331449042460153768864481
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..50
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, add(binomial(n-1, j-1) *2^(j*(j-1)/2) *a(n-j), j=1..n)) end: seq(a(n), n=0..20); # Alois P. Heinz, Oct 16 2011
-
Mathematica
a=Sum[2^Binomial[n,2] x^n/n!,{n,0,20}]; Range[0,20]! CoefficientList[Series[Exp[a-1],{x,0,20}],x]
Formula
E.g.f.: exp(A(x)-1) where A(x) = Sum_{n>=0} 2^C(n,2) x^n/n! is the e.g.f. of A006125.
Comments