cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197638 GA1 numbers: composite m with G(m) >= G(m/p) for all prime factors p of m, where G(k) = sigma(k)/(k*log(log(k))) and sigma(k) = sum of divisors of k.

Original entry on oeis.org

4, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514, 526
Offset: 1

Views

Author

Geoffrey Caveney, Jean-Louis Nicolas and Jonathan Sondow, Dec 02 2011

Keywords

Comments

The members with exactly two prime divisors counted with multiplicity are 4 and 2*p, for primes p > 5. (See Section 5 of "Robin's theorem, primes, and a new elementary reformulation of the Riemann Hypothesis".)
The smallest member with more than two prime factors is 183783600. Such GA1 numbers are called "proper" - see A201557 and "Table of proper GA1 numbers up to 10^60".
The smallest odd member is 1058462574572984015114271643676625.
See "On SA, CA, and GA numbers".

Examples

			4 is a member because G(4) > 0 > G(2) = G(4/2).
		

Crossrefs

Programs

  • Maple
    See "Computation of GA1 numbers".
  • Mathematica
    g[k_] := g[k] = DivisorSigma[1, k]/(k*Log[Log[k]]); okQ[n_] := Module[{p = Transpose[FactorInteger[n]][[1]]}, i = 1; While[i <= Length[p] && g[n] >= g[n/p[[i]]], i++]; i > Length[p]]; Select[Range[2, 1000], ! PrimeQ[#] && okQ[#] &] (* T. D. Noe, Dec 03 2011 *)
  • PARI
    g(k) = sigma(k)/(k*log(log(k)));
    isga1(k)=if (isprime(k), return (0)); gk = g(k);f = factor(k); for(i=1,length(f~), if (gk < g(k/f[i,1]), return(0)););1; \\ Michel Marcus, Sep 09 2012