A197653 Triangle by rows T(n,k), showing the number of meanders with length (n+1)*4 and containing (k+1)*4 Ls and (n-k)*4 Rs, where Ls and Rs denote arcs of equal length and a central angle of 90 degrees which are positively or negatively oriented.
1, 4, 1, 15, 30, 1, 40, 324, 120, 1, 85, 2080, 3120, 340, 1, 156, 9375, 40000, 18750, 780, 1, 259, 32886, 328125, 437500, 82215, 1554, 1, 400, 96040, 1959216, 6002500, 3265360, 288120, 2800, 1
Offset: 0
Examples
For n = 4 and k = 2, T(4,4,2) = 3120. Recursive example: T(1,4,0) = 1, T(1,4,1) = 4, T(1,4,2) = 6, T(1,4,3) = 4, T(1,4,4) = 1, T(3,4,0) = 21, T(3,4,1) = 304, T(3,4,2) = 456, T(3,4,3) = 84, T(3,4,1) = 1, T(4,4,2) = 6^4 + 6*304 = 3120. Example for closed formula: T(4,2) = 6^4 + 6^3 * 4 + 6^2 * 4^2 + 6 * 4^3 = 3120. Some examples of list S and allocated values of dir if n = 4 and k = 2: Length(S) = (4+1)*4 = 20 and S contains (2+1)*4 = 12 Ls. S: L,L,L,L,L,L,L,L,L,L,L,L,R,R,R,R,R,R,R,R dir: 1,2,3,0,1,2,3,0,1,2,3,0,0,3,2,1,0,3,2,1 S: L,L,L,R,L,L,R,L,L,R,R,L,L,L,R,L,L,R,R,R dir: 1,2,3,3,3,0,0,0,1,1,0,0,1,2,2,2,3,3,2,1 S: L,R,L,L,L,L,R,R,R,L,L,R,R,L,L,L,R,L,L,R dir: 1,1,1,2,3,0,0,3,2,2,3,3,2,2,3,0,0,0,1,1 Each value of dir occurs 20/4 = 5 times. Triangle begins: 1; 4, 1; 15, 30, 1; 40, 324, 120, 1; 85, 2080, 3120, 340, 1; ...
Links
- Susanne Wienand, Table of n, a(n) for n = 0..989
- Peter Luschny, Meanders and walks on the circle.
Crossrefs
Programs
-
Maple
A197653 := (n,k) -> binomial(n,k)^4*(n+1)*(n^2-2*n*k+1+2*k+2*k^2)/((1+k)^3); seq(print(seq(A197653(n, k), k=0..n)), n=0..7); # Peter Luschny, Oct 19 2011
-
Mathematica
T[n_, k_] := Binomial[n, k]^4 (n+1)(n^2 - 2n*k + 1 + 2k + 2k^2)/((1+k)^3); Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 30 2018, after Peter Luschny *)
-
PARI
A197653(n,k) = {if(n==1+2*k,4,(1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n))*binomial(n,k)^4} \\ Peter Luschny, Nov 24 2011
-
Sage
def S(N,n,k) : return binomial(n,k)^(N+1)*sum(sum((-1)^(N-j+i)*binomial(N-i,j)*((n+1)/(k+1))^j for i in (0..N) for j in (0..N))) def A197653(n,k) : return S(3,n,k) for n in (0..5) : print([A197653(n,k) for k in (0..n)]) ## Peter Luschny, Oct 24 2011
Formula
Recursive formula (conjectured):
T(n,k) = T(4,n,k)
T(4,n,k) = T(1,n,k)^4 + T(1,n,k)*T(3,n,n-1-k), 0 <= k < n
T(4,n,n) = 1 k = n
T(3,n,k) = T(1,n,k)^3 + T(1,n,k)*T(2,n,n-1-k), 0 <= k < n
T(3,n,n) = 1 k = n
T(2,n,k) = T(1,n,k)^2 + T(1,n,k)*T(1,n,n-1-k), 0 <= k < n
T(2,n,n) = 1 k = n
T(3,n,k) = A194595
T(2,n,k) = A103371
T(1,n,k) = A007318 (Pascal's Triangle)
closed formula (conjectured): T(n,n) = 1, k = n
T(n,k) = A + B + C + D, k < n
A = (C(n,k))^4
B = (C(n,k))^3 * C(n,n-1-k)
C = (C(n,k))^2 *(C(n,n-1-k))^2
D = C(n,k) *(C(n,n-1-k))^3
Let S(n,k) = binomial(2*n,n)^(k+1)*((n+1)^(k+1)-n^(k+1))/(n+1)^k. Then T(2*n,n) = S(n,3). - Peter Luschny, Oct 20 2011
T(n,k) = A198063(n+1,k+1)*C(n,k)^4/(k+1)^3. - Peter Luschny, Oct 29 2011
T(n,k) = h(n,k)*binomial(n,k)^4, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^4)/(1+2*k-n) if 1+2*k-n <> 0, otherwise h(n,k) = 4. - Peter Luschny, Nov 24 2011
Comments