cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197707 G.f.: A(x) = 1 + Sum_{n>=1} x^(n^2) * ((1-x)^n + 1/(1-x)^n).

Original entry on oeis.org

1, 2, 0, 1, 3, 1, 5, 5, 6, 9, 8, 18, 19, 26, 33, 41, 52, 60, 87, 99, 132, 166, 209, 261, 323, 398, 481, 604, 716, 893, 1086, 1331, 1629, 1991, 2428, 2952, 3578, 4314, 5217, 6229, 7508, 8967, 10737, 12838, 15345, 18334, 21894, 26127, 31149, 37093, 44100
Offset: 0

Views

Author

Paul D. Hanna, Oct 17 2011

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + x^3 + 3*x^4 + x^5 + 5*x^6 + 5*x^7 + 6*x^8 +...
where the g.f. A(x) may be expressed as the q-series:
A(x) = 1 + x*((1-x) + 1/(1-x)) + x^4*((1-x)^2 + 1/(1-x)^2) + x^9*((1-x)^3 + 1/(1-x)^3) + x^16*((1-x)^4 + 1/(1-x)^4) +...
and the Jacobi triple product:
A(x) = (1-x^2)*(1+x*(1-x))*(1+x/(1-x)) * (1-x^4)*(1+x^3*(1-x))*(1+x^3/(1-x)) * (1-x^6)*(1+x^5*(1-x))*(1+x^5/(1-x)) *...
		

Crossrefs

Cf. A190791.

Programs

  • PARI
    {a(n)=local(A); A=1+sum(m=1, sqrtint(n)+1, x^(m^2)*((1-x)^m+1/(1-x+x*O(x^n))^m)); polcoeff(A, n)}
    
  • PARI
    {a(n)=local(A); A=prod(m=1, n\2+1, (1-x^(2*m))*(1+x^(2*m-1)*(1-x))*(1+x^(2*m-1)/(1-x+x*O(x^n)))); polcoeff(A, n)}

Formula

G.f.: A(x) = Product_{n>=1} (1 - x^(2*n)) * (1 + x^(2*n-1)*(1-x)) * (1 + x^(2*n-1)/(1-x)), due to the Jacobi triple product identity.