cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A196354 E.g.f.: 1 + Sum_{n>=1} 2*cosh(n*x) * x^(n^2).

Original entry on oeis.org

1, 2, 0, 6, 48, 10, 2880, 14, 53760, 725778, 645120, 359251222, 6082560, 42032390426, 49201152, 2648040595230, 41845937602560, 115757203161634, 102437981698129920, 3958896348126758, 51901909523009372160, 113368395423628842, 12788630502806158049280
Offset: 0

Views

Author

Paul D. Hanna, Oct 28 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 0*x^2/2! + 6*x^3/3! + 48*x^4/4! + 10*x^5/5! + 2880*x^6/6! + 14*x^7/7! + 53760*x^8/8! +...
The e.g.f. A(x) may be expressed by the series:
A(x) = 1 + 2*cosh(x)*x + 2*cosh(2*x)*x^4 + 2*cosh(3*x)*x^9 + 2*cosh(4*x)*x^16 + 2*cosh(5*x)*x^25 +...
and by Jacobi's triple product:
A(x) = (1-x^2)*(1+x*exp(x))*(1+x/exp(x)) * (1-x^4)*(1+x^3*exp(x))*(1+x^3/exp(x)) * (1-x^6)*(1+x^5*exp(x))*(1+x^5/exp(x)) * (1-x^8)*(1+x^7*exp(x))*(1+x^7/exp(x)) *...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (Series[ EllipticTheta[ 3, x I/2, q], {q, 0, n}] // Normal // TrigToExp) /. {x -> q}, {q, 0, n}]] (* Michael Somos, Nov 18 2011 *)
  • PARI
    {a(n)=local(A=1+x); A=1+sum(m=1,sqrtint(n+1), 2*cosh(m*x+x*O(x^n))*x^(m^2)); n!*polcoeff(A, n)}
    
  • PARI
    /* By Jacobi's Triple Product Identity: */
    {a(n)=local(A=1+x); A=prod(m=1, n\2+1, (1-x^(2*m))*(1+exp(x+x*O(x^n))*x^(2*m-1))*(1+exp(-x+x*O(x^n))*x^(2*m-1)+x*O(x^n))); n!*polcoeff(A, n)}

Formula

E.g.f.: Product_{n>=1} (1 - x^(2*n))*(1 + x^(2*n-1)*exp(x))*(1 + x^(2*n-1)/exp(x)), due to the Jacobi triple product identity.
E.g.f.: theta_3( i q/2, q ). - Michael Somos, Oct 29 2011

A200222 G.f. satisfies: A(x) = 1 + Sum_{n>=1} (x*A(x))^(n^2) * (A(x)^n + 1/A(x)^n).

Original entry on oeis.org

1, 2, 4, 12, 42, 164, 688, 3024, 13680, 63110, 295520, 1401012, 6713280, 32470468, 158343504, 777725264, 3843992546, 19104857608, 95419519076, 478668009828, 2410698765472, 12184259877320, 61782045169312, 314202878599696, 1602270787137472, 8191160756085318, 41971595130249968, 215522156779513584
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 42*x^4 + 164*x^5 + 688*x^6 +...
The g.f. A = A(x) may be expressed by the series:
A(x) = 1 + x*A*(A + 1/A) + x^4*A^4*(A^2 + 1/A^2) + x^9*A^9*(A^3 + 1/A^3) + x^16*A^16*(A^4 + 1/A^4) + x^25*A^25*(A^5 + 1/A^5) +...
and by the Jacobi triple product:
A(x) = (1+x)*(1+x*A^2)*(1-x^2*A^2) * (1+x^3*A^2)*(1+x^3*A^4)*(1-x^4*A^4) * (1+x^5*A^4)*(1+x^5*A^6)*(1-x^6*A^6) * (1+x^7*A^6)*(1+x^7*A^8)*(1-x^8*A^8) *...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == r^2*s^2 * QPochhammer[-1/r, r^2*s^2] * QPochhammer[-1/(r*s^2), r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2]/((1 + r)*(1 + r*s^2)), 1 - r*s^2 - 2*(1 + r*s^2) * QPolyGamma[0, 1, r^2*s^2] / Log[r^2*s^2] + 2*(1 + r*s^2) * QPolyGamma[0, Log[-1/(r*s^2)] / Log[r^2*s^2], r^2*s^2] / Log[r^2*s^2] + 2*r^2*s^2*((1 + r*s^2)*(Derivative[0, 1][QPochhammer][-1/r, r^2*s^2] / QPochhammer[-1/r, r^2*s^2] + Derivative[0, 1][QPochhammer][-1/(r*s^2), r^2*s^2] / QPochhammer[-1/(r*s^2), r^2*s^2]) + r^2*s * QPochhammer[-1/r, r^2*s^2] * QPochhammer[-1/(r*s^2), r^2*s^2] *  Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2] / (1 + r)) == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 18 2024 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1,n,A=1+sum(m=1, sqrtint(n+1), (A^m +1/(A+x*O(x^n))^m)*(x*A)^(m^2))); polcoeff(A, n)}
    
  • PARI
    /* By Jacobi's Triple Product Identity: */
    {a(n)=local(A=1+x); for(i=1,n,A=prod(m=1, n\2+1, (1+x^(2*m-1)*A^(2*m-2)+x*O(x^n))*(1+x^(2*m-1)*A^(2*m))*(1-x^(2*m)*A^(2*m)) )); polcoeff(A, n)}

Formula

By the Jacobi triple product identity, g.f. A(x) satisfies:
(1) A(x) = Product_{n>=1} (1 + x^(2*n-1)*A(x)^(2*n-2)) * (1 + x^(2*n-1)*A(x)^(2*n)) * (1 - x^(2*n)*A(x)^(2*n)).
Let G(x) be the g.f. of A190791, then A(x) satisfies:
(2) A(x) = (1/x)*Series_Reversion(x/G(x)),
(3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)),
(4) a(n) = [x^n] G(x)^(n+1)/(n+1),
where G(x) = 1 + Sum_{n>=1} x^(n^2) * (G(x)^n + 1/G(x)^n).
a(n) ~ c * d^n / n^(3/2), where d = 5.42800145666083947972618... and c = 0.45497910593346577587... - Vaclav Kotesovec, Sep 04 2017
Showing 1-2 of 2 results.