A197727 Decimal expansion of 2*Pi/(2+Pi).
1, 2, 2, 2, 0, 3, 0, 9, 4, 0, 7, 0, 3, 3, 1, 4, 5, 7, 8, 7, 6, 1, 1, 9, 0, 7, 7, 5, 9, 0, 7, 9, 3, 7, 7, 2, 3, 4, 7, 4, 8, 4, 5, 2, 6, 5, 9, 1, 2, 1, 8, 5, 5, 9, 0, 4, 1, 7, 8, 3, 3, 5, 5, 0, 0, 8, 4, 9, 2, 9, 6, 6, 7, 8, 7, 2, 6, 3, 1, 6, 7, 7, 3, 1, 4, 7, 4, 2, 7, 6, 6, 9, 1, 3, 3, 4, 8, 6, 1
Offset: 1
Examples
1.22203094070331457876119077590793772347484...
Crossrefs
Cf. A197682.
Programs
-
Maple
Digits:=100: evalf(2*Pi/(2+Pi)); # Wesley Ivan Hurt, Sep 02 2014
-
Mathematica
b = 1/2; c = Pi/4; t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 1.22, 1.23}] N[Pi/(2*b + 2*c), 110] RealDigits[%] (* A197727 *) Simplify[Pi/(2*b + 2*c)] Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2}]
Formula
Continued fraction: 1 + 1/(4 + 3/(4 + 15/(4 + ... + (4*n^2 - 1)/(4 + ... )))). - Peter Bala, Feb 27 2024
Comments