A197739 Decimal expansion of least x>0 having sin(2x)=3*sin(6x).
4, 7, 7, 6, 5, 8, 3, 0, 9, 0, 6, 2, 2, 5, 4, 6, 3, 9, 0, 8, 1, 9, 2, 8, 5, 5, 1, 2, 5, 7, 8, 7, 8, 8, 7, 7, 1, 2, 1, 7, 0, 7, 3, 4, 7, 5, 0, 5, 0, 0, 2, 7, 4, 5, 4, 7, 9, 8, 4, 9, 0, 6, 4, 6, 6, 0, 9, 5, 6, 0, 2, 2, 9, 5, 1, 9, 8, 8, 2, 2, 7, 6, 9, 3, 6, 9, 5, 8, 0, 1, 2, 9, 2, 8, 1, 4, 0, 3, 6
Offset: 0
Examples
0.47765830906225463908192855125787887712170734750500...
Programs
-
Mathematica
b = 1; c = 3; f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x]; r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .47, .48}, WorkingPrecision -> 110] RealDigits[r] (* A197739 *) m = s[r] RealDigits[m] (* A197588 *) Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}] d = m/2; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110] RealDigits[t] (* A197590 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = m/3; t = x /. FindRoot[s[x] == d, {x, 0.8, 0.9}, WorkingPrecision -> 110] RealDigits[t] (* A197755 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = 1; t = x /. FindRoot[s[x] == d, {x, 0.7, 0.8}, WorkingPrecision -> 110] RealDigits[t] (* A003881 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] d = 1/2; t = x /. FindRoot[s[x] == d, {x, .9, .93}, WorkingPrecision -> 110] RealDigits[t] (* A197488 *) Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}] RealDigits[ ArcTan[ Sqrt[ 2-Sqrt[3] ] ], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)
Comments