cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A195696 Decimal expansion of arccos(sqrt(1/3)) and of arcsin(sqrt(2/3)) and arctan(sqrt(2)).

Original entry on oeis.org

9, 5, 5, 3, 1, 6, 6, 1, 8, 1, 2, 4, 5, 0, 9, 2, 7, 8, 1, 6, 3, 8, 5, 7, 1, 0, 2, 5, 1, 5, 7, 5, 7, 7, 5, 4, 2, 4, 3, 4, 1, 4, 6, 9, 5, 0, 1, 0, 0, 0, 5, 4, 9, 0, 9, 5, 9, 6, 9, 8, 1, 2, 9, 3, 2, 1, 9, 1, 2, 0, 4, 5, 9, 0, 3, 9, 7, 6, 4, 5, 5, 3, 8, 7, 3, 9, 1, 6, 0, 2, 5, 8, 5, 6, 2, 8, 0, 7, 3, 4
Offset: 0

Views

Author

Clark Kimberling, Sep 23 2011

Keywords

Comments

Angle (in radians) between an edge and (the normal of) a face of the regular tetrahedron. - R. J. Mathar, Feb 23 2012
Also known as magic angle; root of P_2(cos(theta)), with P_2(x) being second-order Legendre polynomial. - Stanislav Sykora, May 25 2012
From Stanislav Sykora, Nov 14 2013: (Start)
Also the angle between the body diagonal of a cube and an incident edge, and therefore the polar angle of the cone circumscribed to a cube from one of its vertices.
Also half of the tetrahedral angle (A156546).
In nuclear magnetic resonance, the angle, with respect to the direction of the main magnetic field, under which a solid sample needs to be spun in order to average to zero unwanted dipole-dipole spin interactions (the magic angle spinning, or MAS, technique). (End)
Also <3_2> in Conway et al. (1999). - Eric W. Weisstein, Nov 06 2024

Examples

			0.9553166181245092781638571025157577... (= 54.73561031... degrees).
		

Crossrefs

Cf. A156546, A195695, A197739, A210974 (in degrees), A243445.

Programs

Formula

Equals i*log(sqrt(1/3) - i*sqrt(2/3)). - Andrea Pinos, Nov 03 2023
Equals A156546/2 = 2*A197739. - Hugo Pfoertner, Nov 06 2024

A197833 Decimal expansion of least x > 0 having sin(2*x) = 3*Pi*sin(3*Pi*x).

Original entry on oeis.org

1, 6, 4, 8, 4, 3, 9, 4, 6, 7, 0, 4, 9, 4, 0, 0, 1, 2, 6, 0, 0, 5, 7, 0, 3, 5, 6, 1, 9, 0, 8, 8, 9, 8, 8, 9, 3, 0, 5, 2, 3, 2, 1, 8, 4, 8, 0, 9, 1, 2, 4, 0, 2, 0, 0, 3, 4, 0, 6, 2, 7, 1, 5, 7, 2, 6, 6, 6, 6, 8, 0, 3, 5, 6, 2, 9, 5, 3, 6, 9, 4, 7, 4, 3, 7, 0, 6, 5, 7, 8, 5, 2, 5, 2, 9, 6, 4, 1, 3
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			x=0.16484394670494001260057035619088988930523218...
		

Crossrefs

Cf. A197739.

Programs

  • Mathematica
    b = 1; c = 3*Pi;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .16, .17}, WorkingPrecision -> 110]
    RealDigits[r](* A197833 *)
    m = s[r]
    RealDigits[m](* A197834 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, .6}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, .4, .42}, WorkingPrecision -> 110]
    RealDigits[t] (* A197835 *)
    Plot[{s[x], d}, {x, 0, .7}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, .91, .92}, WorkingPrecision -> 110]
    RealDigits[t](* A197836 *)
    Plot[{s[x], d}, {x, 0, Pi/2}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[t] (* A197837 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, .95, .96}, WorkingPrecision -> 110]
    RealDigits[t] (* A197838 *)
    Plot[{s[x], d}, {x, 0, 1}, AxesOrigin -> {0, 0}]

A197821 Decimal expansion of least x > 0 having sin(2*x) = Pi*sin(2*Pi*x).

Original entry on oeis.org

4, 5, 9, 2, 9, 5, 3, 4, 1, 2, 6, 2, 1, 0, 7, 5, 5, 1, 0, 5, 4, 8, 3, 7, 5, 1, 0, 3, 5, 8, 0, 5, 2, 6, 4, 9, 1, 9, 2, 0, 0, 4, 0, 4, 2, 1, 4, 7, 2, 5, 5, 0, 7, 2, 7, 3, 4, 0, 9, 2, 9, 0, 5, 4, 5, 3, 3, 6, 9, 0, 1, 8, 8, 4, 9, 5, 0, 8, 0, 6, 9, 5, 5, 7, 2, 6, 2, 8, 7, 5, 9, 9, 6, 1, 8, 6, 1, 5, 9
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			0.45929534126210755105483751035805264919200...
		

Crossrefs

Cf. A197739.

Programs

  • Mathematica
    b = 1; c = Pi;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .45, .46}, WorkingPrecision -> 110]
    RealDigits[r]  (* A197821 *)
    m = s[r]
    RealDigits[m]  (* A197822 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[t]   (* A197823 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197824 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197726 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, .89, 9.1}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197826 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]

Extensions

Definition corrected by Georg Fischer, Aug 10 2021

A197827 Decimal expansion of least x > 0 having sin(2*x) = 2*Pi*sin(4*Pi*x).

Original entry on oeis.org

2, 4, 4, 0, 5, 5, 0, 5, 5, 1, 2, 1, 2, 4, 6, 6, 8, 6, 8, 5, 3, 5, 6, 4, 2, 9, 7, 8, 4, 8, 4, 9, 5, 3, 5, 6, 5, 6, 6, 3, 6, 9, 3, 6, 1, 6, 5, 8, 4, 1, 3, 6, 0, 5, 9, 4, 5, 7, 7, 6, 9, 0, 2, 8, 3, 2, 8, 3, 5, 3, 4, 7, 3, 8, 2, 2, 4, 7, 1, 9, 2, 5, 0, 9, 7, 7, 9, 7, 3, 9, 6, 8, 9, 3, 1, 4, 0, 6, 6
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			0.24405505512124668685356429784849535656...
		

Crossrefs

Cf. A197739.

Programs

  • Mathematica
    b = 1; c = 2 Pi;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .24, .25}, WorkingPrecision -> 110]
    RealDigits[r]  (* A197827 *)
    m = s[r]
    RealDigits[m]  (* A197828 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, .4, .42}, WorkingPrecision -> 110]
    RealDigits[t] (* A197829 *)
    Plot[{s[x], d}, {x, 0, .7}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, .91, .92}, WorkingPrecision -> 110]
    RealDigits[t] (* A197830 *)
    Plot[{s[x], d}, {x, 0, Pi/2}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, .4, .5}, WorkingPrecision -> 110]
    RealDigits[t] (* A197700 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, .93, .94}, WorkingPrecision -> 110]
    RealDigits[t] (* A197832 *)
    Plot[{s[x], d}, {x, 0, 1}, AxesOrigin -> {0, 0}]

Extensions

Definition corrected by Georg Fischer, Aug 10 2021

A197488 Decimal expansion of least x > 0 having cos(6x) = (cos 4x)^2.

Original entry on oeis.org

9, 2, 1, 8, 8, 4, 0, 8, 8, 0, 1, 5, 8, 6, 0, 7, 8, 4, 8, 1, 9, 9, 6, 9, 2, 4, 8, 8, 6, 1, 8, 1, 0, 6, 3, 6, 5, 7, 2, 9, 9, 5, 6, 7, 5, 8, 2, 6, 9, 9, 6, 5, 4, 6, 6, 2, 7, 1, 3, 6, 1, 5, 3, 8, 1, 9, 1, 2, 2, 0, 6, 5, 0, 7, 6, 6, 6, 2, 6, 9, 4, 8, 7, 4, 9, 7, 0, 9, 4, 9, 5, 5, 1, 4, 9, 9, 5, 5, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 15 2011

Keywords

Comments

The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = (cos(c*x))^2 for selected b and c.
Also the solution of the least x > 0 satisfying (cos(x))^2 + (sin(3x))^2 = 1/2. See A197739. - Clark Kimberling, Oct 19 2011

Examples

			0.9218840880158607848199692488618106365729956...
		

Crossrefs

Cf. A197476.

Programs

  • Mathematica
    b = 6; c = 4; f[x_] := Cos[x]
    t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .92, .93}, WorkingPrecision -> 100]
    RealDigits[t] (* A197488 *)
    Plot[{f[b*x], f[c*x]^2}, {x, 0, 1}]
    RealDigits[ ArcCos[ Root[ -2 + 8#^2 - 6#^4 + #^6 & , 5]/2], 10, 99] // First (* Jean-François Alcover, Feb 19 2013 *)

Extensions

Digits from a(92) on corrected by Jean-François Alcover, Feb 19 2013

A197758 Decimal expansion of least x>0 having sin(2x)=4*sin(8x).

Original entry on oeis.org

3, 7, 1, 4, 5, 8, 2, 9, 4, 0, 3, 3, 4, 8, 6, 3, 5, 2, 5, 0, 5, 8, 3, 2, 7, 2, 8, 5, 1, 9, 5, 1, 2, 4, 0, 9, 8, 0, 8, 9, 6, 8, 2, 6, 0, 7, 3, 9, 5, 7, 5, 3, 9, 0, 7, 2, 3, 4, 4, 5, 2, 9, 1, 0, 6, 3, 6, 6, 8, 0, 5, 8, 1, 2, 0, 6, 6, 9, 3, 6, 8, 8, 6, 9, 9, 1, 5, 1, 0, 5, 8, 9, 8, 3, 6, 8, 1, 2, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			x=0.37145829403348635250583272851951240980...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 4;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .37, .38}, WorkingPrecision -> 110]
    RealDigits[r]  (* A197758 *)
    m = s[r]
    RealDigits[m]  (* A197759 *)
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, 0.64, 0.65}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197760 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, 0.72, 0.73}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197761 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, 0.6, 0.7}, WorkingPrecision -> 110]
    RealDigits[t]  (* A019692, pi/5 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, 0.6, 0.8}, WorkingPrecision -> 110]
    RealDigits[t]   (* A003881 *)
    Plot[{s[x], d}, {x, 0, 1}, AxesOrigin -> {0, 0}]
    RealDigits[ ArcTan[ Sqrt[ Root[17#^3 - 109#^2 + 115# - 15&, 1] ] ], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)

A197589 Decimal expansion of least x>0 satisfying f(x)=m/2, where m is the maximal value of the function f(x)=cos(x)^2+sin(2x)^2.

Original entry on oeis.org

1, 1, 2, 8, 6, 8, 0, 1, 9, 4, 3, 3, 7, 7, 5, 2, 8, 4, 4, 7, 0, 0, 6, 0, 4, 9, 8, 4, 5, 3, 3, 4, 6, 2, 9, 4, 7, 2, 6, 0, 9, 5, 3, 6, 4, 3, 8, 6, 6, 8, 3, 8, 6, 0, 6, 0, 5, 8, 6, 9, 2, 8, 2, 5, 2, 1, 7, 5, 0, 0, 0, 9, 6, 6, 8, 2, 8, 9, 4, 5, 0, 2, 1, 9, 3, 6, 8, 6, 5, 1, 3, 0, 4, 5, 7, 2, 4, 8, 8
Offset: 0

Views

Author

Clark Kimberling, Oct 18 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			x=1.12868019433775284470060498453346294726...
		

Crossrefs

Programs

  • Mathematica
    b = 1; c = 2;
    f[x_] := Cos[b*x]^2; g[x_] := Sin[c*x]^2; s[x_] := f[x] + g[x];
    r = x /. FindRoot[b*Sin[2 b*x] == c*Sin[2 c*x], {x, .65, .66}, WorkingPrecision -> 110]
    RealDigits[r]  (* A195700, arcsin(sqrt(3/8)) *)
    m = s[r]
    RealDigits[m]
    Rationalize[{m, m/2, m/3, 2 m/3, m/4, 3 m/4}]
    Plot[{b*Sin[2 b*x], c*Sin[2 c*x]}, {x, 0, Pi}]
    d = m/2; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197589 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = m/3; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197591 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[t] (* A019670, pi/3 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]
    d = 1/2; t = x /. FindRoot[s[x] == d, {x, 1.1, 1.2}, WorkingPrecision -> 110]
    RealDigits[t]  (* A197592 *)
    Plot[{s[x], d}, {x, 0, Pi}, AxesOrigin -> {0, 0}]

A197591 Decimal expansion of least x>0 satisfying f(x)=m/3, where m is the maximal value of f(x)=cos(x)^2+sin(2x)^2.

Original entry on oeis.org

1, 2, 2, 5, 3, 0, 5, 4, 5, 4, 2, 4, 0, 3, 8, 1, 0, 3, 6, 4, 5, 0, 2, 8, 0, 1, 5, 6, 0, 8, 1, 7, 4, 7, 9, 1, 7, 8, 5, 7, 6, 4, 2, 6, 5, 6, 0, 4, 2, 2, 2, 1, 8, 8, 0, 4, 5, 0, 8, 0, 7, 3, 7, 9, 3, 0, 0, 7, 4, 3, 7, 7, 1, 4, 4, 9, 4, 2, 6, 8, 2, 8, 2, 5, 1, 7, 5, 3, 0, 1, 0, 4, 3, 6, 4, 5, 0, 7, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			x=1.2253054542403810364502801560817479178...
		

Crossrefs

Programs

  • Mathematica
    (See the program at A197589.)

A197592 Decimal expansion of least x>0 having (cos(x))^2+(sin(2x))^2=1/2.

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 1, 9, 0, 4, 0, 0, 1, 8, 9, 3, 4, 2, 9, 1, 4, 8, 9, 8, 9, 2, 0, 7, 9, 8, 3, 6, 6, 4, 2, 2, 6, 1, 6, 0, 7, 6, 2, 9, 3, 3, 9, 8, 4, 5, 1, 2, 5, 5, 1, 1, 1, 2, 1, 8, 8, 2, 5, 6, 0, 4, 5, 3, 0, 8, 2, 9, 9, 6, 8, 5, 5, 4, 0, 0, 6, 4, 8, 0, 3, 8, 7, 0, 4, 2, 9, 2, 9, 6, 7, 5, 0, 8, 9
Offset: 1

Views

Author

Clark Kimberling, Oct 18 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			x=1.2333519040018934291489892079836642261607...
		

Crossrefs

Programs

  • Mathematica
    (See the program at A197589.)
    RealDigits[ ArcCos[ Sqrt[ (5-Sqrt[17])/2 ]/2 ], 10, 99] // First (* Jean-François Alcover, Feb 27 2013 *)

A197759 Decimal expansion of the maximum of (cos(x))^2+(sin(4x))^2.

Original entry on oeis.org

1, 8, 6, 1, 0, 4, 8, 0, 1, 6, 6, 5, 2, 7, 2, 4, 3, 6, 4, 6, 0, 0, 8, 2, 3, 4, 3, 5, 2, 2, 1, 3, 2, 0, 9, 2, 8, 6, 1, 6, 5, 4, 6, 3, 5, 3, 7, 5, 8, 9, 3, 0, 5, 4, 0, 0, 4, 9, 1, 2, 4, 8, 6, 5, 8, 8, 3, 0, 1, 0, 3, 8, 0, 1, 3, 2, 3, 1, 2, 0, 4, 4, 5, 5, 0, 3, 4, 4, 3, 6, 5, 8, 9, 7, 8, 8, 9, 1, 3
Offset: 1

Views

Author

Clark Kimberling, Oct 19 2011

Keywords

Comments

For a discussion and guide to related sequences, see A197739.

Examples

			x=1.8610480166527243646008234352213209286165...
		

Crossrefs

Cf. A197739.

Programs

  • Mathematica
    (See the program at A197758.)
Showing 1-10 of 29 results. Next