A197818 Walsh matrix antidiagonals converted to decimal.
1, 3, 5, 15, 17, 51, 93, 255, 257, 771, 1453, 3855, 4593, 13299, 23901, 65535, 65537, 196611, 371373, 983055, 1175281, 3394803, 6103645, 16711935, 16908033, 50593539, 95245741, 252706575, 301011441, 871576563, 1566432605, 4294967295
Offset: 0
Examples
Top left corner of the negated binary Walsh matrix: 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 The antidiagonals in binary and decimal are: 1 = 1 11 = 3 101 = 5 1111 = 15 10001 = 17 110011 = 51 1011101 = 93 11111111 = 255
Links
- Tilman Piesk, Table of n, a(n) for n = 0..1023
- Tilman Piesk, Negated binary Walsh matrix of size 256
- Tilman Piesk, The antidiagonals shown in a triangular matrix
- Wikipedia, Walsh matrix
Programs
-
PARI
N=2^5; /* a power of 2 */ parity(x)= { my(s=1); while ( (x>>s), x=bitxor(x, x>>s); s+=s; ); return( bitand(x,1) ); } W = matrix(N,N, i,j, if(parity(bitand(i-1,j-1)),0,1); ); a(n) = sum(k=0,n, 2^k * W[n-k+1,k+1] ); vector(N,n,a(n-1)) /* Joerg Arndt, Mar 27 2013 */
Comments