A197863 Smallest powerful number that is a multiple of n.
1, 4, 9, 4, 25, 36, 49, 8, 9, 100, 121, 36, 169, 196, 225, 16, 289, 36, 361, 100, 441, 484, 529, 72, 25, 676, 27, 196, 841, 900, 961, 32, 1089, 1156, 1225, 36, 1369, 1444, 1521, 200, 1681, 1764, 1849, 484, 225, 2116, 2209, 144, 49, 100, 2601, 676, 2809, 108, 3025
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a197863 n = product $ zipWith (^) (a027748_row n) (map (max 2) $ a124010_row n) -- Reinhard Zumkeller, Jan 06 2012
-
Mathematica
With[{pwrnos=Join[{1},Select[Range[5000],Min[Transpose[ FactorInteger[#]] [[2]]]>1&]]},Flatten[Table[Select[pwrnos,Divisible[#,n]&,1],{n,60}]]] (* Harvey P. Dale, Aug 14 2012 *) f[p_, e_] := p^Max[e, 2]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
-
PARI
a(n)=local(fm=factor(n));prod(k=1,matsize(fm)[1],fm[k,1]^max(fm[k,2],2))
Formula
Multiplicative with a(p^e) = p^max(e,2).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (2*p-1)/(p^2*(p-1))) = 2.71098009471568319328... . - Amiram Eldar, Jul 29 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/18) * Product_{p prime} (1 - 2/p^2 + 2/p^4 - 1/p^5) = 0.2165355664... . - Amiram Eldar, Nov 19 2022
a(n) = n * A055231(n). - Amiram Eldar, Sep 01 2023