cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197863 Smallest powerful number that is a multiple of n.

Original entry on oeis.org

1, 4, 9, 4, 25, 36, 49, 8, 9, 100, 121, 36, 169, 196, 225, 16, 289, 36, 361, 100, 441, 484, 529, 72, 25, 676, 27, 196, 841, 900, 961, 32, 1089, 1156, 1225, 36, 1369, 1444, 1521, 200, 1681, 1764, 1849, 484, 225, 2116, 2209, 144, 49, 100, 2601, 676, 2809, 108, 3025
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a197863 n = product $
       zipWith (^) (a027748_row n) (map (max 2) $ a124010_row n)
    -- Reinhard Zumkeller, Jan 06 2012
  • Mathematica
    With[{pwrnos=Join[{1},Select[Range[5000],Min[Transpose[ FactorInteger[#]] [[2]]]>1&]]},Flatten[Table[Select[pwrnos,Divisible[#,n]&,1],{n,60}]]] (* Harvey P. Dale, Aug 14 2012 *)
    f[p_, e_] := p^Max[e, 2]; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 09 2022 *)
  • PARI
    a(n)=local(fm=factor(n));prod(k=1,matsize(fm)[1],fm[k,1]^max(fm[k,2],2))
    

Formula

Multiplicative with a(p^e) = p^max(e,2).
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + (2*p-1)/(p^2*(p-1))) = 2.71098009471568319328... . - Amiram Eldar, Jul 29 2022
Sum_{k=1..n} a(k) ~ c * n^3, where c = (Pi^2/18) * Product_{p prime} (1 - 2/p^2 + 2/p^4 - 1/p^5) = 0.2165355664... . - Amiram Eldar, Nov 19 2022
a(n) = n * A055231(n). - Amiram Eldar, Sep 01 2023