cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197927 The number of isolated nodes in all labeled directed graphs (with self loops allowed) on n nodes.

Original entry on oeis.org

0, 1, 4, 48, 2048, 327680, 201326592, 481036337152, 4503599627370496, 166020696663385964544, 24178516392292583494123520, 13944156602510523416463735259136, 31901471898837980949691369446728269824, 289909687580898100839964337544428699577745408
Offset: 0

Views

Author

Geoffrey Critzer, Oct 19 2011

Keywords

Comments

Here, isolated means indegree = outdegree = 0.
a(n) is also the number of directed graphs on [n] (no self loops allowed, A053763) with a distinguished vertex of indegree 0. - Geoffrey Critzer, Apr 01 2023

Crossrefs

Programs

  • Mathematica
    a = Sum[2^(n^2)x^n/n!, {n,0,20}]; Range[0,12]! CoefficientList[Series[x a, {x,0,12}], x]

Formula

E.g.f.: x*A(x) where A(x) = Sum_{n>=0} 2^(n^2)*x^n/n!.
a(n) = n * 2^((n-1)^2) = n*A002416(n-1).
Sum_{n>=0} a(n)*z^n/B(n) = z*Sum_{n>=0} A053763(n)*z^n/B(n) where B(n) = n!*2^binomial(n,2). - Geoffrey Critzer, Apr 01 2023