cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A202947 G.f.: [ Sum_{n>=0} (n+1) * 2^(n^2) * x^n ]^(1/2).

Original entry on oeis.org

1, 2, 22, 980, 161638, 100318460, 240313495420, 2251316821283048, 83005840299778004614, 12089092134684999622076396, 6972054121242613685463168904468, 15950722005044706228925521886595357720, 144954811888851643278920459489891540357638876
Offset: 0

Views

Author

Paul D. Hanna, Dec 26 2011

Keywords

Comments

Equals the self-convolution square-root of A197927 (with offset).

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 980*x^3 + 161638*x^4 + 100318460*x^5 +...
where
A(x)^2 = 1 + 2*2*x + 3*2^4*x^2 + 4*2^9*x^3 + 5*2^16*x^4 + 6*2^25*x^5 +...
more explicitly,
A(x)^2 = 1 + 4*x + 48*x^2 + 2048*x^3 + 327680*x^4 + 201326592*x^5 +...+ A197927(n+1)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,(m+1)*2^(m^2)*x^m+x*O(x^n))^(1/2),n)}
    
  • PARI
    {a(n)=if(n==0,1,(n+1)*2^(n^2-1)-sum(k=1,n-1,a(n-k)*a(k)/2))}

Formula

a(n) = (n+1)*2^(n^2-1) - Sum_{k=1..n-1} a(n-k)*a(k)/2 for n>0 with a(0)=1.

A217436 Triangular array read by rows. T(n,k) is the number of labeled relations on n elements with exactly k vertices of indegree and outdegree = 0.

Original entry on oeis.org

1, 1, 1, 13, 2, 1, 469, 39, 3, 1, 63577, 1876, 78, 4, 1, 33231721, 317885, 4690, 130, 5, 1, 68519123173, 199390326, 953655, 9380, 195, 6, 1, 562469619451069, 479633862211, 697866141, 2225195, 16415, 273, 7, 1, 18442242396353040817, 4499756955608552, 1918535448844, 1860976376, 4450390, 26264, 364, 8, 1
Offset: 0

Views

Author

Geoffrey Critzer, Oct 02 2012

Keywords

Comments

Row sums = 2^(n^2). First column (k = 0) is A173403.
Sum_{k=1,2,...,n} T(n,k)*k = A197927.

Examples

			1,
1, 1,
13, 2, 1,
469, 39, 3, 1,
63577, 1876, 78, 4, 1,
33231721, 317885, 4690, 130, 5, 1,
68519123173, 199390326, 953655, 9380, 195, 6, 1
		

Programs

  • Mathematica
    nn=6; s=Sum[Sum[(-1)^k Binomial[n,k] 2^(n-k)^2, {k,0,n}] x^n/n!, {n,0,nn}]; Range[0,nn]! CoefficientList[Series[Exp[ y x] s, {x,0,nn}], {x,y}] //Grid

Formula

E.g.f.: exp(y*x)*A(x) where A(x) is the e.g.f. for A173403.
Showing 1-2 of 2 results.