cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197953 a(n) = 1 + Sum_{d|n, d>1} d * a(n/d).

Original entry on oeis.org

1, 3, 4, 11, 6, 24, 8, 43, 22, 38, 12, 128, 14, 52, 54, 171, 18, 186, 20, 206, 74, 80, 24, 640, 56, 94, 130, 284, 30, 494, 32, 683, 114, 122, 118, 1226, 38, 136, 134, 1038, 42, 682, 44, 440, 432, 164, 48, 3072, 106, 488, 174, 518, 54, 1374, 182, 1436, 194
Offset: 1

Views

Author

Paul D. Hanna, Oct 19 2011

Keywords

Comments

Logarithmic derivative of A129374, where g.f. G(x) of A129374 satisfies: G(x) = 1/(1-x) * G(x^2)*G(x^3)*G(x^4)*...*G(x^n)*...

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 24*x^6/6 +...
where
L(x) = -log(1-x) + L(x^2) + L(x^3) + L(x^4) + L(x^5) +...+ L(x^n) +...
also, exp(L(x)) is the g.f. of A129374:
exp(L(x)) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 15*x^6 + 20*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=sumdiv(n,d,d*if(d==1,1,a(n/d)))}
    
  • PARI
    /* L.g.f. satisfies: L(x) = -log(1-x) + Sum_{n>1} L(x^n) */
    {a(n)=local(L=x,X=x+x*O(x^n));for(i=1,n,L=-log(1-X)+sum(m=2,n,subst(L,x,x^m+x*O(x^n))));n*polcoeff(L,n)}

Formula

L.g.f. satisfies: L(x) = -log(1-x) + Sum_{n>1} L(x^n), where L(x) = Sum_{n>=1} a(n)*x^n/n.