cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318372 a(1) = 1; a(n+1) = Sum_{d|n} d*a(d).

Original entry on oeis.org

1, 1, 3, 10, 43, 216, 1308, 9157, 73299, 659701, 6597228, 72569509, 870835456, 11320860929, 158492062165, 2377380932700, 38038094996499, 646647614940484, 11639657069589711, 221153484322204510, 4423069686450687468, 92884463415464445994, 2043458195140290381379, 46999538488226678771718
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 24 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
    add(d*procname(d),d=numtheory:-divisors(n-1))
    end proc:
    f(1):= 1:
    map(f, [$1..30]); # Robert Israel, Aug 24 2018
  • Mathematica
    a[n_] := a[n] = Sum[d a[d], {d, Divisors[n - 1]}]; a[1] = 1; Table[a[n], {n, 24}]
  • PARI
    a(n) = if (n==1, 1, sumdiv(n-1, d, d*a(d))); \\ Michel Marcus, Aug 25 2018

Formula

L.g.f.: -log(Product_{n>=1} (1 - x^n)^a(n)) = Sum_{n>=1} a(n+1)*x^n/n.
a(n) ~ c * (n-1)!, where c = 1.818022128135673369551657167939033389270758547856526032865616543756614556559... - Vaclav Kotesovec, Aug 25 2018

A307607 a(n) = 1 + Sum_{d|n, d > 1} d^2*a(n/d).

Original entry on oeis.org

1, 5, 10, 37, 26, 122, 50, 293, 172, 330, 122, 1306, 170, 642, 710, 2341, 290, 2876, 362, 3562, 1382, 1578, 530, 13082, 1276, 2202, 3088, 6946, 842, 12822, 962, 18725, 3398, 3762, 3750, 37756, 1370, 4698, 4742, 35818, 1682, 25014, 1850, 17098, 17072, 6882
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + DivisorSum[n, #^2 a[n/#] &, # > 1 &]; Table[a[n], {n, 1, 46}]
  • PARI
    a(n) = 1 + sumdiv(n, d, if (d>1, d^2*a(n/d))); \\ Michel Marcus, Apr 20 2019

Formula

L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k*A074206(k))) = Sum_{n>=1} a(n)*x^n/n.
Showing 1-2 of 2 results.