A198080 a(n) = (3^(3*n + 3)- 26*n - 27)/169.
0, 4, 116, 3144, 84904, 2292428, 61895580, 1671180688, 45121878608, 1218290722452, 32893849506244, 888133936668632, 23979616290053112, 647449639831434076, 17481140275448720108, 471990787437115442976, 12743751260802116960416, 344081284041657157931300
Offset: 0
Examples
a(1) = (3^(3 + 3) - 26 - 27)/169 = 676/169 = 4.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..700
- Index entries for linear recurrences with constant coefficients, signature (29,-55,27).
Programs
-
Magma
I:=[0, 4, 116]; [n le 3 select I[n] else 29*Self(n-1)-55*Self(n-2)+27*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 25 2011
-
Maple
for n from 0 to 30 do:x:=(3^(3*n+3) - 26*n - 27)/169 : printf(`%d, `, x):od:
-
Mathematica
LinearRecurrence[{29,-55,27},{0,4,116},50] (* Vincenzo Librandi, Nov 25 2011 *)
-
PARI
a(n)=(3^(3*n+3)-26*n-27)/169 \\ Charles R Greathouse IV, Jul 06 2017
Formula
a(n) = (3^(3*n + 3) - 26*n - 27)/169.
G.f.: -4*x / ( (27*x-1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
Comments