A198165 Primes from merging of 5 successive digits in decimal expansion of sqrt(2).
56237, 37309, 78569, 67187, 48073, 76679, 66797, 97379, 79907, 50387, 34327, 64157, 15727, 91229, 70249, 73721, 12149, 70999, 35831, 65927, 55927, 55799, 11527, 55997, 59971, 86201, 20147, 28517, 88919, 30871, 14321, 45083, 50839, 62603, 51407, 87253, 72533
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812, A104824, A104825, A104826, A104843, A104844, A104845, A104846, A104847, A104848, A104849, A104850, A198161, A198162, A198163, A198164, A198166, A198167, A198168, A198169, A198170, A198171, A198172, A198173, A198174, A198175, A104851, A198177.
Programs
-
Mathematica
With[{len=5},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
Comments