cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A198161 Primes from merging of 10 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

4142135623, 8872420969, 9698078569, 7537694807, 7973799073, 7846210703, 2644121497, 9935831413, 6592750559, 7010955997, 1472851741, 5251407989, 2533965463, 5339654633, 6152583523, 1525835239, 3950547457, 5750287759, 5996172983, 4084988471, 6668713013
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 10 digits in length.

Crossrefs

For sqrt(2), see also A198162, A198163, A198164, A198165,A198166, A198167, A198168, A198169, A198161 (this sequence).
For the Golden Ratio, see A198177, A103773, A103789, A103793, A103808, A103809, A103810, A103811, A103812.
For the Euler-Mascheroni constant gamma, see A198776, A198777, A198778, A198779, A198780, A198781, A198782, A198783, A198784.

Programs

  • Mathematica
    With[{len=10},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
  • PARI
    A198161(n, x=sqrt(2), m=10, silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next; silent||print1(p", "); n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 02 2014

A198177 10-digit primes found in the decimal expansion of the Golden Ratio phi, in the order of occurrence.

Original entry on oeis.org

1772030917, 4189391137, 6222353693, 7931800607, 5959395829, 5829056383, 3832266131, 6131992829, 6892501711, 9250171169, 1043216269, 3136144381, 7587012203, 7954454749, 8509874339, 4487706647, 1240076521, 7780531531, 5315317141, 1704666599, 7046665991
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 10 digits in length.
The sequence A103752 has erroneously the same definition; the actual definition of the terms is unknown. - M. F. Hasler, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    With[{len=10},Select[FromDigits/@Partition[RealDigits[GoldenRatio,10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
  • PARI
    default(realprecision,N=1000);m=10^10;phi=sqrt(5/4)+.5;for(k=9,N,isprime(phi\.1^k%m)||next;(p=phi\.1^k%m)>10^9&&print1(p",")) \\ M. F. Hasler, Oct 31 2014

A103808 Primes from merging of 6 successive digits in decimal expansion of the Golden Ratio; (1+sqrt(5))/2.

Original entry on oeis.org

339887, 458683, 638117, 628189, 902449, 418939, 189391, 386891, 235369, 693179, 607667, 595939, 613199, 171169, 631361, 497587, 864449, 987433, 544877, 647809, 217057, 705751, 427621, 410117, 666599, 979873, 731761, 874807, 530567, 228911
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005

Keywords

Comments

Leading zeros are not permitted, so each term is 6 digits in length. - Harvey P. Dale, Oct 23 2011

Crossrefs

Programs

  • Mathematica
    With[{len=6},FromDigits/@Select[Partition[RealDigits[GoldenRatio,10, 1000][[1]],len,1],PrimeQ[FromDigits[#]] &&IntegerLength[ FromDigits[#]] ==len&]] (* Harvey P. Dale, Oct 23 2011 *)
  • PARI
    A103808(n,x=(sqrt(5)+1)/2, m=6,silent=0)={m=10^m; for(k=1, default(realprecision), (isprime(p=x\.1^k%m)&&p*10>m)||next;silent||print1(p", ");n--||return(p))} \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use, e.g., \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Apr 22 2013

A198162 Primes from merging of 2 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

41, 13, 23, 37, 73, 67, 71, 53, 37, 73, 31, 17, 67, 79, 97, 73, 37, 79, 73, 47, 53, 43, 41, 73, 13, 23, 29, 97, 83, 73, 37, 41, 97, 83, 31, 41, 13, 59, 59, 79, 11, 71, 47, 59, 97, 71, 59, 97, 53, 59, 47, 17, 41, 89, 19, 23, 29, 23, 43, 71, 43, 83, 97, 79, 79
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 2 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=2},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A198163 Primes from merging of 3 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

421, 373, 887, 569, 967, 769, 317, 797, 379, 907, 107, 503, 641, 157, 727, 229, 149, 709, 659, 557, 571, 701, 109, 599, 997, 971, 919, 523, 839, 397, 251, 463, 331, 829, 523, 239, 547, 457, 877, 599, 617, 983, 557, 337, 857, 701, 113, 997, 503, 277, 823, 929
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 3 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=3},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A198164 Primes from merging of 4 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

5623, 7309, 6967, 7187, 8753, 7537, 3769, 6679, 9907, 4621, 8753, 4327, 4157, 2309, 1229, 2297, 3583, 6659, 5927, 5927, 5011, 7027, 2851, 1741, 8609, 4079, 7253, 7457, 7759, 3557, 2203, 5701, 5437, 4603, 8689, 6899, 8999, 7069, 4027, 7823, 9293, 3691, 6311
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 4 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=4},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A198169 Primes from merging of 9 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

213562373, 488016887, 688724209, 807856967, 718753769, 376948073, 501384623, 470109559, 609552329, 292304843, 260362799, 396546331, 523950547, 877599617, 172983557, 220337531, 570113543, 160386899, 603868999, 782306849, 684929369, 861249497, 124949771
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 9 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=9},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A198166 Primes from merging of 6 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

135623, 569671, 480731, 850387, 157273, 384623, 585073, 970999, 927557, 275579, 950501, 686201, 450839, 514079, 989687, 872533, 583523, 750287, 759961, 961729, 983557, 752203, 531857, 857011, 570113, 374603, 340849, 868999, 997069, 970699, 900481, 277903
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 6 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=6},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]], len,1],IntegerLength[#]==len&&PrimeQ[#]&]]

A104851 Primes from merging of 10 successive digits in decimal expansion of e.

Original entry on oeis.org

7427466391, 7413596629, 6059563073, 3490763233, 2988075319, 1573834187, 7021540891, 5408914993, 6480016847, 9920695517, 1838606261, 6062613313, 3845830007, 1692836819, 4425056953, 2505695369, 5490598793, 1782154249, 8215424999, 9229576351, 9519366803
Offset: 1

Views

Author

Andrew G. West (WestA(AT)wlu.edu), Mar 27 2005

Keywords

Comments

Scan decimal expansion of e from left to right, recording any 10-digit primes seen. - N. J. A. Sloane, Feb 05 2012
All the primes listed here must have 10 digits, i.e., "leading zeros are not allowed". Otherwise, one would also have some terms as 297606737 or 865746377 or 98793127 from A104850. - M. F. Hasler, Nov 01 2014
The original version read (1185790117, 1180978417, 1573834187, 1838606261, 1308008771, 1692836819, 1782154249, 1825288693, 1525971943, 1730123819, 1332069811, 1881593041, 1934580727, 1978623209, 1164218399, 1574862173, 1635834619, 1311914371, ...). These terms are obtained when using signed 32-bit integers, i.e., take the 10-digit numbers modulo 2^32, and select the primes between 10^9 and 2^31. - M. F. Hasler, Nov 01 2014

Crossrefs

Programs

  • Mathematica
    With[{de=FromDigits/@Partition[RealDigits[E,10,10000][[1]],10,1]}, Select[de,#>10^9&&PrimeQ[#]&]] (* Harvey P. Dale, Feb 05 2012 *)
  • PARI
    list_A104851(x=exp(1), m=10)=m=10^m; for(k=1, default(realprecision), isprime(p=x\.1^k%m)&&p*10>m&&print1(p", ")) \\ The optional arguments can be used to produce other sequences of this series (cf. Crossrefs). Use e.g. \p999 to set precision to 999 digits. - M. F. Hasler, Nov 01 2014

Extensions

Corrected by Harvey P. Dale, Feb 05 2012
Offset changed from 0 to 1 by Vincenzo Librandi, Apr 21 2013

A198167 Primes from merging of 7 successive digits in decimal expansion of sqrt(2).

Original entry on oeis.org

3562373, 5048801, 2420969, 5038753, 7534327, 6415727, 5073721, 2126441, 2644121, 9709993, 9935831, 2226659, 9275579, 8206057, 5714701, 7027453, 2851741, 8640889, 2145083, 5835239, 3868999, 8689997, 9970699, 9900481, 2779031, 6311159, 6668713, 6871301
Offset: 1

Views

Author

Harvey P. Dale, Oct 21 2011

Keywords

Comments

Leading zeros are not permitted, so each term is 7 digits in length.

Crossrefs

Programs

  • Mathematica
    With[{len=7},Select[FromDigits/@Partition[RealDigits[Sqrt[2],10,1000][[1]],len,1],IntegerLength[#]==len&&PrimeQ[#]&]]
Showing 1-10 of 24 results. Next