cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198258 Row sums of A197655.

Original entry on oeis.org

1, 7, 190, 5831, 219626, 8976562, 394800204, 18211045575, 873216720082, 43136486269382, 2183722698469676, 112795257850321202, 5925951358743662260, 315869014732813229716, 17048301919464100932440, 930217336628892162216135, 51244644190683748419791970
Offset: 0

Views

Author

Susanne Wienand, Oct 24 2011

Keywords

Comments

Number of meanders of length (n+1)*6 which are composed by arcs of equal length and a central angle of 60 degrees.
Definition of a meander:
A binary curve C is a triple (m, S, dir) such that
(a) S is a list with values in {L,R} which starts with an L,
(b) dir is a list of m different values, each value of S being allocated a value of dir,
(c) consecutive Ls increment the index of dir,
(d) consecutive Rs decrement the index of dir,
(e) the integer m>0 divides the length of S and
(f) C is a meander if each value of dir occurs length(S)/m times.
For this sequence, m = 6.
The terms are proved by brute force for 0 <= n <= 5, but not yet in general. - Susanne Wienand, Oct 29 2011

Examples

			Some examples of list S and allocated values of dir if n = 4:
Length(S) = (4+1)*6 = 30.
  S: L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L,L
dir: 1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0,1,2,3,4,5,0
  S: L,L,L,L,L,L,L,R,R,R,R,L,R,R,R,R,R,L,L,L,L,R,R,L,L,L,L,R,L,L
dir: 1,2,3,4,5,0,1,1,0,5,4,4,4,3,2,1,0,0,1,2,3,3,2,2,3,4,5,5,5,0
  S: L,L,L,L,L,R,R,R,R,R,R,R,L,L,R,L,L,R,L,L,R,L,L,L,R,R,L,L,L,L
dir: 1,2,3,4,5,5,4,3,2,1,0,5,5,0,0,0,1,1,1,2,2,2,3,4,4,3,3,4,5,0
Each value of dir occurs 30/6 = 5 times.
		

Crossrefs

Programs

  • Maple
    A198258 := proc(n) local i, j, k, pow;
    pow := (a, b) -> if a=0 and b=0 then 1 else a^b fi;
    add(add(add((-1)^(j+i)*binomial(i,j)*binomial(n,k)^6*pow(n+1,j)*pow(k+1,5-j)/(k+1)^5, i=0..5),j=0..5),k=0..n) end:
    seq(A198258(n), n=0..16); # Peter Luschny, Nov 02 2011
  • Mathematica
    T[n_, k_] := (1 + n)(1 + 3 k + 3 k^2 - n - 3 k*n + n^2)(1 + k + k^2 + n - k*n + n^2) Binomial[n, k]^6/(1 + k)^5;
    a[n_] := Sum[T[n, k], {k, 0, n}];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 29 2019 *)
  • PARI
    A198258(n) = {sum(k=0,n,if(n == 1+2*k,6,(1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n))*binomial(n,k)^6)} \\ Peter Luschny, Nov 24 2011

Formula

a(n) = Sum_{k=0..n} Sum_{j=0..5} Sum_{i=0..5} (-1)^(j+i)*C(i,j)*C(n,k)^6*(n+1)^j*(k+1)^(5-j)/(k+1)^5. - Peter Luschny, Nov 02 2011
a(n) = Sum_{k=0..n} h(n,k)*binomial(n,k)^6, where h(n,k) = (1+k)*(1-((n-k)/(1+k))^6)/(1+2*k-n) if 1+2*k-n <> 0 else h(n,k) = 6. - Peter Luschny, Nov 24 2011
Conjecture: working with offset 1, that is, a(1) = 1, a(2) = 7, ..., then the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) holds for positive integers n and r and all primes p >= 3. - Peter Bala, Mar 21 2023
a(n) ~ sqrt(3) * 2^(6*n+3) / (Pi*n)^(5/2). - Vaclav Kotesovec, Apr 17 2023