cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A198296 G.f.: exp( Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - d*x^n) ).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 17, 22, 44, 62, 115, 154, 311, 409, 754, 1070, 1949, 2639, 4917, 6645, 12055, 16916, 29594, 40719, 73907, 100959, 176010, 248207, 429626, 594220, 1040624, 1436936, 2473555, 3486360, 5901887, 8233872, 14174779, 19689223, 33203829, 46967767
Offset: 0

Views

Author

Paul D. Hanna, Jan 26 2012

Keywords

Comments

Logarithmic derivative yields A198299.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 8*x^5 + 17*x^6 + 22*x^7 +...
such that, by definition:
log(A(x)) = x/(1-x) + (x^2/2)/((1-x^2)*(1-2*x^2)) + (x^3/3)/((1-x^3)*(1-3*x^3)) + (x^4/4)/((1-x^4)*(1-2*x^4)*(1-4*x^4)) + (x^5/5)/((1-x^5)*(1-5*x^5)) + (x^6/6)/((1-x^6)*(1-2*x^6)*(1-3*x^6)*(1-6*x^6)) +...+ (x^n/n)/Product_{d|n} (1-d*x^n) +...
Also, we have the identity:
log(A(x)) = (1 + x + x^2 + x^3 + x^4 + x^5 +...)*x
+ (1 + 3*x^2 + 7*x^4 + 15*x^6 + 31*x^8 +...)*x^2/2
+ (1 + 4*x^3 + 13*x^6 + 40*x^9 + 121*x^12 +...)*x^3/3
+ (1 + 7*x^4 + 35*x^8 + 155*x^12 + 651*x^16 +...)*x^4/4
+ (1 + 6*x^5 + 31*x^10 + 156*x^15 + 781*x^20 +...)*x^5/5
+ (1 + 12*x^6 + 97*x^12 + 672*x^18 + 4333*x^24 +...)*x^6/6 +...
+ exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k )*x^n/n +...
Explicitly, the logarithm begins:
log(A(x)) = x + 3*x^2/2 + 4*x^3/3 + 11*x^4/4 + 6*x^5/5 + 36*x^6/6 + 8*x^7/7 + 83*x^8/8 + 49*x^9/9 + 178*x^10/10 +...+ A198299(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*exp(sum(k=1,n\m,sigma(m,k)*x^(m*k)/k)+x*O(x^n)))),n)}
    
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*exp(sumdiv(m,d,-log(1-d*x^m+x*O(x^n)))))),n)}

Formula

G.f.: exp( Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n,k)*x^(n*k)/k ) ), where sigma(n,k) is the sum of the k-th powers of the divisors of n.

A198302 a(n) = Sum_{d|n} d * sigma(n/d, d).

Original entry on oeis.org

1, 5, 7, 21, 11, 65, 15, 133, 106, 245, 23, 1077, 27, 1041, 1637, 3365, 35, 9992, 39, 18361, 16401, 22841, 47, 134461, 15686, 106917, 179494, 355173, 59, 1220075, 63, 1593189, 1952705, 2228909, 631005, 13778268, 75, 9962313, 20732901, 34805473, 83, 113693883
Offset: 1

Views

Author

Paul D. Hanna, Jan 27 2012

Keywords

Comments

Here sigma(n,k) is the sum of the k-th powers of the divisors of n.
Logarithmic derivative of A198301.

Examples

			L.g.f.: L(x) = x + 5*x^2/2 + 7*x^3/3 + 21*x^4/4 + 11*x^5/5 + 65*x^6/6 + ...
Exponentiation yields the g.f. of A198301: exp(L(x)) = 1 + x + 3*x^2 + 5*x^3 + 12*x^4 + 18*x^5 + 42*x^6 + 62*x^7 + 131*x^8 + 206*x^9 + 398*x^10 + ... + A198301(n)*x^n + ...
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local d; add(d*numtheory:-sigma[d](n/d),d=numtheory:-divisors(n)) end proc:
    map(f, [$1..100]); # Robert Israel, Nov 05 2024
  • Mathematica
    a[n_] := DivisorSum[n, # * DivisorSigma[#, n/#] &]; Array[a, 40] (* Amiram Eldar, Aug 18 2023 *)
  • PARI
    {a(n)=sumdiv(n, d, d*sigma(n/d,d))}
    
  • PARI
    {a(n)=n*polcoeff(sum(m=1,n,sum(k=1,n\m,sigma(m,k)*x^(m*k)/m)+x*O(x^n)),n)}

Formula

L.g.f.: Sum_{n>=1} Sum_{k>=1} sigma(n,k) * x^(n*k)/n.

A198305 L.g.f.: Sum_{n>=1} (x^n/n) / Product_{d|n} (1 - n*x^d/d).

Original entry on oeis.org

1, 3, 7, 19, 51, 159, 519, 1867, 7234, 30243, 135125, 642307, 3231047, 17138845, 95554662, 558384955, 3411049542, 21730279218, 144048688538, 991665854999, 7077433997172, 52283785492733, 399238054300828, 3147127294177099, 25579801627862301, 214139186144996635
Offset: 1

Views

Author

Paul D. Hanna, Jan 27 2012

Keywords

Comments

Forms the logarithmic derivative of A198304.

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 51*x^5/5 + 159*x^6/6 +...
such that, by definition:
L(x) = x/(1-x) + (x^2/2)/((1-2*x)*(1-x^2)) + (x^3/3)/((1-3*x)*(1-x^3)) + (x^4/4)/((1-4*x)*(1-2*x^2)*(1-x^4)) + (x^5/5)/((1-5*x)*(1-x^5)) + (x^6/6)/((1-6*x)*(1-3*x^2)*(1-2*x^3)*(1-x^6)) +...+ (x^n/n)/Product_{d|n} (1-n*x^d/d) +...
Exponentiation yields the g.f. of A198304:
exp(L(x)) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 21*x^5 + 54*x^6 + 148*x^7 +...
		

Crossrefs

Cf. A198304 (exp), A198299.

Programs

  • PARI
    {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*exp(sumdiv(m, d, -log(1-m*x^d/d+x*O(x^n))))), n)}
Showing 1-3 of 3 results.