A198300 Square array M(k,g), read by antidiagonals, of the Moore lower bound on the order of a (k,g)-cage.
3, 4, 4, 5, 6, 5, 6, 8, 10, 6, 7, 10, 17, 14, 7, 8, 12, 26, 26, 22, 8, 9, 14, 37, 42, 53, 30, 9, 10, 16, 50, 62, 106, 80, 46, 10, 11, 18, 65, 86, 187, 170, 161, 62, 11, 12, 20, 82, 114, 302, 312, 426, 242, 94, 12, 13, 22, 101, 146, 457, 518, 937, 682, 485, 126, 13
Offset: 1
Examples
This is the table formed from the antidiagonals for k+g = 5..20: 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 4 6 10 14 22 30 46 62 94 126 190 254 382 510 766 5 8 17 26 53 80 161 242 485 728 1457 2186 4373 6560 6 10 26 42 106 170 426 682 1706 2730 6826 10922 27306 7 12 37 62 187 312 937 1562 4687 7812 23437 39062 8 14 50 86 302 518 1814 3110 10886 18662 65318 9 16 65 114 457 800 3201 5602 22409 39216 10 18 82 146 658 1170 5266 9362 42130 11 20 101 182 911 1640 8201 14762 12 22 122 222 1222 2222 12222 13 24 145 266 1597 2928 14 26 170 314 2042 15 28 197 366 16 30 226 17 32 18
References
- E. Bannai and T. Ito, On finite Moore graphs, J. Fac. Sci. Tokyo, Sect. 1A, 20 (1973) 191-208.
- R. M. Damerell, On Moore graphs, Proc. Cambridge Phil. Soc. 74 (1973) 227-236.
Links
- Jason Kimberley, Table of n, a(n) for n = 1..20100 (k+g = 5..204)
- Jason Kimberley, Table of n, k+g, k, g, M(k,g)=a(n) for k+g = 5..204 (n = 1..20100)
- G. Exoo and R. Jajcay, Dynamic cage survey, Electr. J. Combin. (2008, 2011).
- Gordon Royle, Cages of higher valency
Crossrefs
Moore lower bound on the order of a (k,g) cage: this sequence (square); rows: A000027 (k=2), A027383 (k=3), A062318 (k=4), A061547 (k=5), A198306 (k=6), A198307 (k=7), A198308 (k=8), A198309 (k=9), A198310 (k=10), A094626 (k=11); columns: A020725 (g=3), A005843 (g=4), A002522 (g=5), A051890 (g=6), A188377 (g=7), 2*A053698 (g=8), 2*A053699 (g=10), 2*A053700 (g=12), 2*A053716 (g=14), 2*A053716 (g=16), 2*A102909 (g=18), 2*A103623 (g=20), 2*A060885 (g=22), 2*A105067 (g=24), 2*A060887 (g=26), 2*A104376 (g=28), 2*A104682 (g=30), 2*A105312 (g=32).
Cf. A054760 (the actual order of a (k,g)-cage).
Programs
-
Magma
ExtendedStringToInt:=func
; M:=func ; k_:=2;g_:=3; anti:=func ; [anti(kg):kg in[5..15]]; -
Mathematica
Table[Function[g, FromDigits[#, k - 1] &@ IntegerDigits@ SeriesCoefficient[x (1 + x)/((1 - x) (1 - 10 x^2)), {x, 0, g}]][n - k + 3], {n, 2, 12}, {k, n, 2, -1}] // Flatten (* Michael De Vlieger, May 15 2017 *)
Formula
M(k,2i) = 2 sum_{j=0}^{i-1}(k-1)^j = string "2"^i read in base k-1.
M(k,2i+1) = (k-1)^i + 2 sum_{j=0}^{i-1}(k-1)^j = string "1"*"2"^i read in base k-1.
Recurrence:
M(k,3) = k + 1,
M(k,2i) = M(k,2i-1) + (k-1)^(i-1),
M(k,2i+1) = M(k,2i) + (k-1)^i.
Comments