A198301 G.f.: exp( Sum_{n>=1} (x^n/n) * Sum_{d|n} d*sigma(n/d,d) ).
1, 1, 3, 5, 12, 18, 42, 62, 131, 206, 398, 610, 1203, 1810, 3358, 5260, 9471, 14518, 26182, 39906, 70320, 108849, 187251, 287525, 497288, 758860, 1286936, 1986352, 3330677, 5102712, 8560107, 13070327, 21685731, 33328561, 54744685, 83792111, 137817745, 210223967
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 5*x^3 + 12*x^4 + 18*x^5 + 42*x^6 + 62*x^7 +... where the logarithm begins: log(A(x)) = x + 5*x^2/2 + 7*x^3/3 + 21*x^4/4 + 11*x^5/5 + 65*x^6/6 + 15*x^7/7 + 133*x^8/8 + 106*x^9/9 +...+ A198302(n)*x^n/n +...
Programs
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,sumdiv(m, d, d*sigma(m/d,d))*x^m/m)+x*O(x^n)),n)}
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,sum(k=1,n\m,sigma(m,k)*x^(m*k)/m)+x*O(x^n))),n)}
Formula
G.f.: exp( Sum_{n>=1} Sum_{k>=1} sigma(n,k) * x^(n*k)/n ).
Logarithmic derivative yields A198302.
Comments