cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198328 The Matula-Goebel number of the rooted tree obtained from the rooted tree with Matula-Goebel number n after removing the leaves, together with their incident edges.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 5, 2, 3, 2, 6, 1, 3, 4, 2, 3, 4, 5, 7, 2, 9, 3, 8, 2, 5, 6, 11, 1, 10, 3, 6, 4, 3, 2, 6, 3, 5, 4, 3, 5, 12, 7, 13, 2, 4, 9, 6, 3, 2, 8, 15, 2, 4, 5, 5, 6, 7, 11, 8, 1, 9, 10, 3, 3, 14, 6, 5, 4, 7, 3, 18, 2, 10, 6, 11, 3, 16, 5
Offset: 1

Views

Author

Emeric Deutsch, Nov 24 2011

Keywords

Comments

This is not the pruning operation mentioned in the Balaban reference (p. 360) and in the Todeschini-Consonni reference (p. 42) since in the case that the root has degree 1, this root and the incident edge are not deleted.

Examples

			a(7)=2 because the rooted tree with Matula-Goebel number 7 is Y; after deleting the leaves and their incident edges, we obtain the 1-edge tree having Matula-Goebel number 2.
		

References

  • A. T. Balaban, Chemical graphs, Theoret. Chim. Acta (Berl.) 53, 355-375, 1979.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000.

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a198328 n = genericIndex a198328_list (n - 1)
    a198328_list = 1 : 1 : g 3 where
       g x = y : g (x + 1) where
         y = if t > 0 then a000040 (a198328 t) else a198328 r * a198328 s
             where t = a049084 x; r = a020639 x; s = x `div` r
    -- Reinhard Zumkeller, Sep 03 2013
  • Maple
    with(numtheory): a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif n = 2 then 1 elif bigomega(n) = 1 then ithprime(a(pi(n))) else a(r(n))*a(s(n)) end if end proc; seq(a(n), n = 1 .. 120);
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = If[PrimeQ[n], Prime[a[PrimePi[n]]], Times @@ (a[#[[1]]]^#[[2]]& /@ FactorInteger[n])];
    Array[a, 100] (* Jean-François Alcover, Dec 18 2017 *)

Formula

a(1)=1; a(2)=1; if n=prime(t) (t>1), then a(n)=prime(a(t)); if n=r*s (r,s,>=2), then a(n)=a(r)*a(s). The Maple program is based on this recursive formula.
Completely multiplicative with a(2) = 1, a(prime(t)) = prime(a(t)) for t > 1. - Andrew Howroyd, Aug 01 2018