A198375 Smallest n-digit number whose product of digits is n or 0 if no number exists.
1, 12, 113, 1114, 11115, 111116, 1111117, 11111118, 111111119, 1111111125, 0, 111111111126, 0, 11111111111127, 111111111111135, 1111111111111128, 0, 111111111111111129, 0, 11111111111111111145, 111111111111111111137, 0, 0, 111111111111111111111138
Offset: 1
Examples
113, 131, and 311 are the 3-digit numbers whose product of digits is 3; 113 is the smallest.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Table[If[FactorInteger[n][[-1, 1]] > 9, 0, i = (10^n - 1)/9; While[i < 10^n && Times @@ IntegerDigits[i] != n, i++]; If[i == 10^n, 0, i]], {n, 30}] (* T. D. Noe, Oct 24 2011 *)
-
Python
def A198375(n): return int(str(A198376(n))[::-1]) print([A198375(n) for n in range(1, 25)]) # Michael S. Branicky, Jan 21 2021
Formula
a(A068191(n)) = 0 for n >=1.
a(n) <> 0 iff n in { A002473 }. - Michael S. Branicky, Jan 21 2021