A198389 Square root of second term of a triple of squares in arithmetic progression.
5, 10, 13, 15, 17, 20, 25, 26, 25, 29, 30, 34, 37, 35, 41, 39, 40, 50, 45, 52, 51, 50, 61, 53, 55, 65, 58, 60, 65, 65, 65, 68, 75, 74, 85, 70, 82, 78, 73, 75, 80, 85, 85, 85, 89, 91, 101, 87, 100, 90, 113, 95, 104, 97, 102, 100, 111, 122, 106, 105, 123, 109
Offset: 1
Keywords
Examples
Connection to Pythagorean triangle hypotenuses: a(20) = 10 because (in the notation of the Zumkeller link) (u,v,w) = 2*(1,5,7) and the Pythagorean triangle is 2*(x=(7-1)/2,y=(1+7)/2,5) = 2*(3,4,5) with hypotenuse 2*5 = 10. - _Wolfdieter Lang_, May 23 2013
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Reinhard Zumkeller, Table of initial values
- Keith Conrad, Arithmetic progressions of three squares
Programs
-
Haskell
a198389 n = a198389_list !! (n-1) a198389_list = map (\(,x,) -> x) ts where ts = [(u,v,w) | w <- [1..], v <- [1..w-1], u <- [1..v-1], w^2 - v^2 == v^2 - u^2]
-
Mathematica
wmax = 1000; triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]]; Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 2]] (* Jean-François Alcover, Oct 20 2021 *)
Comments