A198390 Square root of third term of a triple of squares in arithmetic progression.
7, 14, 17, 21, 23, 28, 31, 34, 35, 41, 42, 46, 47, 49, 49, 51, 56, 62, 63, 68, 69, 70, 71, 73, 77, 79, 82, 84, 85, 89, 91, 92, 93, 94, 97, 98, 98, 102, 103, 105, 112, 113, 115, 119, 119, 119, 119, 123, 124, 126, 127, 133, 136, 137, 138, 140, 141, 142, 146
Offset: 1
Keywords
Examples
Connection to leg sums of Pythagorean triangles: a(2) = 14 because (in the notation of the Zumkeller link) (u,v,w)= (2,10,14) = 2*(1,5,7), and this corresponds to the non-primitive Pythagorean triangle 2*(x=(7-1)/1,y=(1+7)/2,z=5) = 2*(3,4,5) with leg sum 2*(3+4) = 14. - _Wolfdieter Lang_, May 23 2013
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000
- Keith Conrad, Arithmetic progressions of three squares
- Reinhard Zumkeller, Table of initial values
Programs
-
Haskell
a198390 n = a198390_list !! (n-1) a198390_list = map (\(,,x) -> x) ts where ts = [(u,v,w) | w <- [1..], v <- [1..w-1], u <- [1..v-1], w^2 - v^2 == v^2 - u^2]
-
Mathematica
wmax = 1000; triples[w_] := Reap[Module[{u, v}, For[u = 1, u < w, u++, If[IntegerQ[v = Sqrt[(u^2 + w^2)/2]], Sow[{u, v, w}]]]]][[2]]; Flatten[DeleteCases[triples /@ Range[wmax], {}], 2][[All, 3]] (* Jean-François Alcover, Oct 20 2021 *)
-
PARI
is(n)=my(t=n^2);forstep(i=2-n%2,n-2,2, if(issquare((t+i^2)/2), return(1))); 0 \\ Charles R Greathouse IV, May 28 2013
Comments