cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A198443 Conjectured record minima of the positive distance d between the square of an integer y and the fifth power of a positive integer x such that d = y^2 - x^5 (x <> k^2 and y <> k^5).

Original entry on oeis.org

3, 4, 11, 26, 37, 368, 1828, 2180, 7825, 8177, 8217, 71393, 72481, 75154, 118409, 175485, 203697, 206370, 1049148, 1058224, 1843945, 1846618, 8186369, 8197633, 9600802, 96020524, 169503449, 294638801, 305158594, 305192969, 657099024
Offset: 1

Views

Author

Artur Jasinski, Oct 25 2011

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
Only the values of x < 10^8 have been searched/
For x values see A198444.
For y values see A198445.
Conjecture: For any positive number x >= A198444(n), the distance d between the square of an integer y and the fifth power of a positive integer x (such that x <> k^2 and y <> k^5) can't be less than A198443(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)] + 1; k = m^2 - n^5; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 100000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]];  AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; dd

Formula

a(n) = (A198445(n))^2 - (A198444(n))^5.

A198444 Values x for record minima of the positive distance d between the square of an integer y and the fifth power of a positive integer x such that d = y^2 - x^5 (x <> k^2 and y <> k^5).

Original entry on oeis.org

1, 2, 5, 23, 27, 73, 96, 104, 396, 404, 432, 686, 723, 735, 1130, 1159, 2019, 2031, 3861, 5310, 18219, 18231, 25592, 25608, 44367, 200141, 213842, 308228, 390615, 390635, 549976, 631544, 1579129, 1657086, 2941211, 2941239, 5523608
Offset: 1

Views

Author

Artur Jasinski, Oct 25 2011

Keywords

Comments

Distance d is equal to 0 when x = k^2 and y = k^5.
For d values see A198443.
For y values see A198445.
Conjecture: For any positive number x >= A198444(n), the distance d between the square of an integer y and the fifth power of x (such that x <> k^2 and y <> k^5) can't be less than A198443(n).

Crossrefs

Programs

  • Mathematica
    max = 1000; vecd = Table[10^100, {n, 1, max}]; vecx = Table[10^100, {n, 1, max}]; vecy = Table[10^100, {n, 1, max}]; len = 1; Do[m = Floor[(n^5)^(1/2)] + 1; k = m^2 - n^5; If[k != 0, ile = 0; Do[If[vecd[[z]] < k, ile = ile + 1], {z, 1, len}]; len = ile + 1; vecd[[len]] = k; vecx[[len]] = n; vecy[[len]] = m], {n, 1, 100000000}]; dd = {}; xx = {}; yy = {}; Do[AppendTo[dd, vecd[[n]]]; AppendTo[xx, vecx[[n]]]; AppendTo[yy, vecy[[n]]], {n, 1, len}]; vecx
Showing 1-2 of 2 results.