A198481 Square root of the largest square dividing ((2n-1)!)^(2n-3).
1, 1, 240, 304819200, 3440500260470784000, 1827912356210202139164672000000000, 13482302715547740229948201750717130814259200000000000
Offset: 1
Keywords
Programs
-
Maple
A000188 := proc(n) a := 1 ; for pf in ifactors(n)[2] do p := op(1,pf) ; e := op(2,pf) ; a := a*p^(floor(e/2)) ; end do: a ; end proc: A198481 := proc(n) A000188( A134367(2*n-1)) ; end proc: seq(A198481(n),n=1..10) ; # R. J. Mathar, Oct 25 2011
-
Mathematica
aa = {}; data = Table[kk = Sqrt[(n!)^(n - 2)], {n, 1, 100, 2}]; sp = data /. Sqrt[_] -> 1; sfp = data/sp; sp Sqrt[#]&/@Table[Max[Select[Divisors[((2n-1)!)^(2n-3)],IntegerQ[Sqrt[#]]&]],{n,7}] (* Harvey P. Dale, May 24 2024 *)
Comments