A198629 Alternating sums of powers of 1,2,...,6, divided by 3.
0, 1, 7, 45, 287, 1821, 11487, 72045, 449407, 2789181, 17230367, 105996045, 649630527, 3968504541, 24174772447, 146908944045, 890924667647, 5393590283901, 32604530573727, 196853323284045, 1187295678104767, 7154833690143261
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
Programs
-
Maple
A198629 := proc(n) (-3^n+4^n-1+2^n-5^n+6^n)/3 ; end proc: seq(A198629(n),n=0..20) ; # R. J. Mathar, May 11 2022
-
Mathematica
Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* Harvey P. Dale, Jul 17 2016 *)
Formula
a(n)=sum(((-1)^j)*j^n,j=1..6)/3, n>=0.
E.g.f.: sum(((-1)^j)*exp(j*x),j=1..6)/3 = exp(x)*(exp(6*x)-1)/(3*(exp(x)+1)).
O.g.f.: sum(((-1)^j)/(1-j*x),j=1..6)/3 = x*(1-14*x+73*x^2-168*x^3+148*x^4)/
product(1-j*x,j=1..6). See A196847 for a formula for the coefficients of the numerator polynomial.
Comments