cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198629 Alternating sums of powers of 1,2,...,6, divided by 3.

Original entry on oeis.org

0, 1, 7, 45, 287, 1821, 11487, 72045, 449407, 2789181, 17230367, 105996045, 649630527, 3968504541, 24174772447, 146908944045, 890924667647, 5393590283901, 32604530573727, 196853323284045, 1187295678104767, 7154833690143261
Offset: 0

Views

Author

Wolfdieter Lang, Oct 28 2011

Keywords

Comments

For the e.g.f.s and o.g.f.s of such alternating power sums see A196847 (even case) and A196848 (odd case).

Crossrefs

Programs

  • Maple
    A198629 := proc(n)
        (-3^n+4^n-1+2^n-5^n+6^n)/3 ;
    end proc:
    seq(A198629(n),n=0..20) ; # R. J. Mathar, May 11 2022
  • Mathematica
    Table[Total[Times@@@Partition[Riffle[Range[6]^n,{-1,1},{2,-1,2}],2]]/3,{n,0,30}] (* Harvey P. Dale, Jul 17 2016 *)

Formula

a(n)=sum(((-1)^j)*j^n,j=1..6)/3, n>=0.
E.g.f.: sum(((-1)^j)*exp(j*x),j=1..6)/3 = exp(x)*(exp(6*x)-1)/(3*(exp(x)+1)).
O.g.f.: sum(((-1)^j)/(1-j*x),j=1..6)/3 = x*(1-14*x+73*x^2-168*x^3+148*x^4)/
product(1-j*x,j=1..6). See A196847 for a formula for the coefficients of the numerator polynomial.