cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A198679 Decimal expansion of the absolute minimum of sin(x)+sin(2x)+sin(3x).

Original entry on oeis.org

2, 4, 9, 9, 6, 0, 7, 6, 0, 4, 3, 2, 0, 0, 5, 6, 6, 0, 4, 3, 6, 8, 1, 2, 6, 2, 8, 5, 6, 1, 8, 0, 4, 3, 2, 1, 8, 2, 4, 3, 7, 2, 3, 8, 5, 6, 7, 4, 0, 0, 3, 1, 7, 2, 2, 7, 3, 3, 7, 1, 4, 1, 8, 1, 3, 5, 8, 0, 1, 7, 5, 3, 0, 5, 1, 8, 0, 6, 0, 8, 8, 8, 8, 1, 9, 0, 5, 6, 6, 5, 4, 4, 7, 1, 4, 7, 5, 3, 8
Offset: 1

Views

Author

Clark Kimberling, Oct 29 2011

Keywords

Comments

See A198677 for a guide to related sequences.

Examples

			x=5.615894235655113730430510613029770525768423...
min=-2.499607604320056604368126285618043218243...
		

Crossrefs

Cf. A198677.

Programs

  • Mathematica
    n = 3; f[t_] = Sin[t]; s[t_] := Sum[f[k*t], {k, 1, n}];
    x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
    v = t /. Part[x, 2]
    RealDigits[u]  (* A198679 *)
    RealDigits[v] (* A198680 *)
    Plot[s[t], {t, -3 Pi, 3 Pi}]
    (* Second program: *)
    Root[-108 + 2124x^2 - 4892x^4 + 729x^6, 1] // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Feb 19 2013 *)

A198681 Nonnegative multiples of 3 whose sum of base-3 digits are of the form 3k+1.

Original entry on oeis.org

3, 9, 24, 27, 42, 48, 60, 66, 72, 81, 96, 102, 114, 120, 126, 138, 144, 159, 168, 174, 180, 192, 198, 213, 216, 231, 237, 243, 258, 264, 276, 282, 288, 300, 306, 321, 330, 336, 342, 354, 360, 375, 378, 393, 399, 408, 414, 429, 432, 447, 453, 465, 471, 477, 492, 498
Offset: 1

Views

Author

John W. Layman, Oct 28 2011

Keywords

Comments

It appears that Sum[k^j, 0<=k<=2^n-1, k in A198680] = Sum[k^j, 0<=k<=2^n-1, k in A198681] = Sum[k^j, 0<=k<=2^n-1, k in A180682], for 0<=j<=n-1, which has been verified numerically in a number of cases. This is a generalization of Prouhet's Theorem (see the reference). To illustrate for j=3, we have Sum[k^3, 0<=k<=2^n-1, k in A198680] = {0,0,12636,1108809,94478400,7780827681,633724260624,51425722195929,4168024588857600,...}, Sum[k^3, 0<=k<=2^n-1, k in A198681] = {0,27,14580,1095687,94478400,7780827681,633724260624,51425722195929,4168024588857600,..., Sum[k^3, 0<=k<=2^n-1, k in A198682] = {0,216,7776,1121931,94478400,7780827681,633724260624,51425722195929,4168024588857600,...}, and it is seen that all three sums agree for n>=4=j+1.

Crossrefs

Programs

  • Mathematica
    Select[3Range[200],IntegerQ[(Total[IntegerDigits[#,3]]-1)/3]&] (* Harvey P. Dale, Feb 05 2012 *)

Extensions

Offset corrected by Michel Marcus, Mar 02 2016

A198682 Nonnegative multiples of 3 whose sum of base-3 digits are of the form 3*k+2.

Original entry on oeis.org

6, 12, 18, 30, 36, 51, 54, 69, 75, 84, 90, 105, 108, 123, 129, 141, 147, 153, 162, 177, 183, 195, 201, 207, 219, 225, 240, 246, 252, 267, 270, 285, 291, 303, 309, 315, 324, 339, 345, 357, 363, 369, 381, 387, 402, 411, 417, 423, 435, 441, 456, 459, 474, 480, 486
Offset: 1

Views

Author

John W. Layman, Oct 28 2011

Keywords

Comments

It appears that Sum[k^j, 0<=k<=2^n-1, k in A198680] = Sum[k^j, 0<=k<=2^n-1, k in A198681] = Sum[k^j, 0<=k<=2^n-1, k in A180682], for 0<=j<=n-1, which has been verified numerically in a number of cases. This is a generalization of Prouhet's Theorem (see the reference). To illustrate for j=3, we have Sum[k^3, 0<=k<=2^n-1, k in A198680] = {0, 0, 12636, 1108809, 94478400, 7780827681, 633724260624, 51425722195929, 4168024588857600,...}, Sum[k^3, 0<=k<=2^n-1, k in A198681] = {0, 27, 14580, 1095687, 94478400, 7780827681, 633724260624, 51425722195929, 4168024588857600,..., Sum[k^3, 0<=k<=2^n-1, k in A198682] = {0, 216, 7776, 1121931, 94478400, 7780827681, 633724260624, 51425722195929, 4168024588857600,...}, and it is seen that all three sums agree for n>=4=j+1.
For each m, the sequence contains exactly one of 9*m, 9*m+3, 9*m+6. - Robert Israel, Mar 04 2016

Crossrefs

Programs

  • Maple
    select(t -> convert(convert(t,base,3),`+`) mod 3 = 2, [seq(3*i,i=1..1000)]); # Robert Israel, Mar 04 2016
  • Mathematica
    Select[Range[3, 498, 3], IntegerQ[(-2 + Plus@@IntegerDigits[#, 3])/3] &] (* Alonso del Arte, Nov 02 2011 *)
  • PARI
    isok(n) = !(n % 3) && !((vecsum(digits(n, 3)) - 2) % 3); \\ Michel Marcus, Mar 02 2016

Extensions

Offset corrected by Michel Marcus, Mar 02 2016

A198728 Decimal expansion of the least x>0 that gives the absolute minimum of sin(x)+sin(2x)+sin(3x).

Original entry on oeis.org

5, 6, 1, 5, 8, 9, 4, 2, 3, 5, 6, 5, 5, 1, 1, 3, 7, 3, 0, 4, 3, 0, 5, 1, 0, 6, 1, 3, 0, 2, 9, 7, 7, 0, 5, 2, 5, 7, 6, 8, 4, 2, 3, 2, 5, 4, 2, 6, 3, 1, 8, 2, 4, 8, 9, 8, 0, 3, 8, 4, 3, 5, 2, 7, 4, 2, 3, 0, 7, 3, 8, 9, 7, 4, 8, 5, 0, 8, 7, 6, 9, 5, 9, 2, 4, 5, 1, 2, 5, 7, 6, 5, 1, 3, 7, 6, 3, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Oct 29 2011

Keywords

Comments

See A198677 for a guide to related sequences.

Examples

			x=5.615894235655113730430510613029770525768423...
min=-2.499607604320056604368126285618043218243...
		

Crossrefs

Cf. A198677.

Programs

  • Mathematica
    n = 3; f[t_] = Sin[t]; s[t_] := Sum[f[k*t], {k, 1, n}];
    x = N[Minimize[s[t], t], 110]; u = Part[x, 1]
    v = t /. Part[x, 2]
    RealDigits[u]  (* A198679 *)
    RealDigits[v] (* A198680 *)
    Plot[s[t], {t, -3 Pi, 3 Pi}]
    (* Second program: *)
    RealDigits[3*Pi/2 + ArcSin[Root[-1 - 4x + 2x^2 + 6x^3, 3]], 10, 99] // First (* Jean-François Alcover, Feb 15 2013 *)
Showing 1-4 of 4 results.