cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A225823 Number of hopping sequences in four-colored rooted trees with n nodes, starting and ending with the same "initial state" from all of the (two-colored) rooted trees in A198760. Compared to A198761, only one node color of the initial states is mobile on the tree (Falicov-Kimball model).

Original entry on oeis.org

1, 4, 54, 1568, 80680, 6510624, 761286848, 121944722176, 25668462562560
Offset: 2

Views

Author

Eva Kalinowski, Jul 30 2013

Keywords

References

  • G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
  • M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)

Crossrefs

Extensions

Term a(10) added by Martin Paech, Sep 02 2013, calculated on a HP Integrity Superdome 2-32s by courtesy of Hewlett-Packard Development Company, L.P.

A240605 Total number of distinct sequences for the number of double occupancy in the underlying Fermion problem (see comment), i.e., the number of distinct hopping sequences (cf. A198761, A225823) in four-colored rooted trees with n nodes, starting and ending with the same coloring in two colors (cf. A198760, corresponding to zero double-occupancy).

Original entry on oeis.org

1, 2, 10, 59, 397, 2878, 21266, 162732, 1253128, 9839212, 77644825, 620377508, 4981522538, 40351448045, 328421827064, 2690586461296, 22139293490054, 183106636176023, 1520309861062921, 12675106437486945, 106033283581264574, 890035798660219755
Offset: 2

Views

Author

Martin Paech, Apr 09 2014

Keywords

Comments

The sequences of double-occupancy are generated by the operators T_{+U}, T_{-U}, and T_{0} defined in eq. (8) in Phys. Rev. B 85, 045105 (2012), see below.
Also the number of "island altitude-profiles" of length 2n-1, see examples, which satisfy the following requirements:
(1) Every profile starts and ends at sea-level (zero double-occupancies).
(2) The height increases and decreases with every step at most one unit.
(3) The maximum height does not go beyond floor(n/2).
(4) The minimum height does not fall below sea-level.
(5) Sea-level could only be reached after an even number of steps.
(6) For n even, no plateaus exist at maximum height (= n/2).
(7) For n even, two peaks at maximum height have an even distance.

Examples

			n = 2
  0 1 0  |->  T_{+U} T_{-U}  |->  /\
n = 3
                                                     __
  0 1 1 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{-U}  |->  /  \
  0 1 0 1 0  |->  T_{+U} T_{-U} T_{+U} T_{-U}  |->  /\/\
n = 4
                                                                       ____
  0 1 1 1 1 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{ 0} T_{ 0} T_{-U}  |->  /    \
                                                                       __/\
  0 1 1 1 2 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{+U} T_{-U} T_{-U}  |->  /    \
                                                                       __
  0 1 1 1 0 1 0  |->  T_{+U} T_{ 0} T_{ 0} T_{-U} T_{+U} T_{-U}  |->  /  \/\
                                                                       _/\_
  0 1 1 2 1 1 0  |->  T_{+U} T_{ 0} T_{+U} T_{-U} T_{ 0} T_{-U}  |->  /    \
                                                                       /\__
  0 1 2 1 1 1 0  |->  T_{+U} T_{+U} T_{-U} T_{ 0} T_{ 0} T_{-U}  |->  /    \
                                                                       /\/\
  0 1 2 1 2 1 0  |->  T_{+U} T_{+U} T_{-U} T_{+U} T_{-U} T_{-U}  |->  /    \
                                                                       /\
  0 1 2 1 0 1 0  |->  T_{+U} T_{+U} T_{-U} T_{-U} T_{+U} T_{-U}  |->  /  \/\
                                                                         __
  0 1 0 1 1 1 0  |->  T_{+U} T_{-U} T_{+U} T_{ 0} T_{ 0} T_{-U}  |->  /\/  \
                                                                         /\
  0 1 0 1 2 1 0  |->  T_{+U} T_{-U} T_{+U} T_{+U} T_{-U} T_{-U}  |->  /\/  \
  0 1 0 1 0 1 0  |->  T_{+U} T_{-U} T_{+U} T_{-U} T_{+U} T_{-U}  |->  /\/\/\
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y, m, v, d) option remember; `if`(y>x or y<0 or
           y>m or v and y=m and d=1 or y=0 and irem(x, 2)=1, 0,
          `if`(x=0, 1, `if`(v and y=m or y=0, 0, b(x-1, y, m, v,
          `if`(d=2, 2, 1-d)))+ `if`(y=0 or y=1 and irem(x, 2)=0, 0,
           b(x-1, y-1, m, v, `if`(d=2, `if`(v and y=m, 1, 2), 1-d)))+
           b(x-1, y+1, m, v, `if`(d=2, 2, 1-d))))
        end:
    a:= n-> b(2*n-2, 0, iquo(n, 2, 'r'), r=0, 2):
    seq(a(n), n=2..30);  # Alois P. Heinz, May 09 2014
  • Mathematica
    b[x_, y_, m_, v_, d_] := b[x, y, m, v, d] = If[y>x || y<0 || y>m || v && y == m && d==1 || y==0 && Mod[x, 2]==1, 0, If[x==0, 1, If[v && y==m || y==0, 0, b[x-1, y, m, v, If[d==2, 2, 1-d]]] + If[y==0 || y==1 && Mod[x, 2]==0, 0, b[x-1, y-1, m, v, If[d==2, If[v && y==m, 1, 2], 1-d]]] + b[x-1, y+1, m, v, If[d==2, 2, 1-d]]]]; a[n_] := b[2*n-2, 0, Quotient[n, 2], Mod[ n, 2]==0, 2]; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)

Extensions

Terms a(16) and a(17) are calculated on a HP Integrity Superdome 2-16s by courtesy of Hewlett-Packard Development Company, L.P., by Martin Paech, May 08 2014 (The used algorithm generates explicitly all distinct sequences of double-occupancy, i.e. all valid "island altitude-profiles", and counts them.)
a(18)-a(23) from Alois P. Heinz, May 08 2014

A198760 Number of initial spin configurations in two-colored rooted trees with n nodes.

Original entry on oeis.org

2, 8, 32, 136, 596, 2712, 12642, 60234, 291840, 1434184, 7130640, 35807114, 181339236, 925139186, 4750176056, 24528421712, 127294780994, 663591911824, 3473315219722, 18246162722278, 96169600405626, 508413199626078, 2695245063006696, 14324688031734740
Offset: 2

Views

Author

N. J. A. Sloane, Oct 29 2011

Keywords

Comments

Also the number of two-colored rooted trees that have for a given color of the root at least one nearest neighbor node of the root in the other color. - Martin Paech, Apr 16 2012

References

  • G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011

Crossrefs

Programs

  • Maple
    g:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          binomial(t*g(i-1$2, 2)+j-1, j)*g(n-i*j, i-1, t), j=0..n/i)))
        end:
    a:= n-> 2*(g(n-1$2, 2) -g(n-1$2, 1)):
    seq(a(n), n=2..30);  # Alois P. Heinz, May 12 2014
  • Mathematica
    g[n_, i_, t_] := g[n, i, t] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[t*g[i-1, i-1, 2]+j-1, j]*g[n-i*j, i-1, t], {j, 0, n/i}]]]; a[n_] := 2*(g[n-1, n-1, 2] - g[n-1, n-1, 1]) // FullSimplify; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Nov 25 2014, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = A245870 = 5.6465426162329497128927135162..., c = 0.29201514711473716704145008728... . - Vaclav Kotesovec, Sep 12 2014

Extensions

Terms a(8) and a(9) added by Martin Paech, Apr 16 2012
Term a(10) added by Martin Paech, Jul 30 2013
a(11)-a(25) from Alois P. Heinz, May 12 2014

A226584 Numerators of the series expansion of the ground-state energy of the Hubbard model in the limits of strong coupling and infinite dimensions.

Original entry on oeis.org

-1, -1, -19, -593, -23877, -4496245, -1588528613, -12927125815211
Offset: 2

Views

Author

Eva Kalinowski, Jun 12 2013

Keywords

Comments

a(n) is the numerator of the sum of the weighted contributions from the A198761(n) ways of electron hopping on all of the A198760(n) initial spin-configurations, see eq. A1 in Phys. Rev. B 85, 045105 (2012).

Examples

			-1/2, -1/2, -19/8, -593/32, -23877/128, -4496245/2048, ... = A226584/A226585
		

References

  • Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
  • M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012).

Crossrefs

Cf. A226585.

A226585 Denominators of the series expansion of the ground-state energy of the Hubbard model in the limits of strong coupling and infinite dimensions.

Original entry on oeis.org

2, 2, 8, 32, 128, 2048, 55296, 31850496
Offset: 2

Views

Author

Eva Kalinowski, Jun 12 2013

Keywords

Comments

a(n) is the denominator of the sum of the weighted contributions from the A198761(n) ways of electron hopping on all of the A198760(n) initial spin-configurations, see eq. A1 in Phys. Rev. B 85, 045105 (2012).

Examples

			-1/2, -1/2, -19/8, -593/32, -23877/128, -4496245/2048, ... = A226584/A226585
		

References

  • Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
  • M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012).

Crossrefs

Cf. A226584.
Showing 1-5 of 5 results.