Martin Paech has authored 3 sequences.
A242354
Number T(n,k) of four-colored rooted trees of order n and structure k; triangle T(n,k), n>=1, 1<=k<=A000081(n), read by rows.
Original entry on oeis.org
4, 16, 64, 40, 256, 160, 256, 80, 1024, 640, 1024, 320, 1024, 640, 544, 640, 140, 4096, 2560, 4096, 1280, 4096, 2560, 2176, 2560, 560, 4096, 2560, 4096, 1280, 4096, 2560, 2560, 1600, 2176, 1280, 224, 16384, 10240, 16384, 5120, 16384, 10240, 8704, 10240, 2240
Offset: 1
Let {h, u, d, p} be a set of four colors, corresponding to the four possible "states" of each tree node (lattice site) in the underlying physical problem, namely its occupation with no electron (hole), with one up-spin electron, with one down-spin electron, or with one up-spin and one down-spin electron (pair). (We consider each rooted tree as a cutout of the Bethe lattice in infinite dimensions.) Then for
n = 1 with A000081(1) = 1
h(), u(), d(), p() are the 4 four-colored trees of the first and only structure k = 1 (sum is 4 = A136793(1)); for
n = 2 with A000081(2) = 1
h(h()), h(u()), h(d()), h(p()),
u(h()), u(u()), u(d()), u(p()),
d(h()), d(u()), d(d()), d(p()),
p(h()), p(u()), p(d()), p(p()) are the 16 four-colored trees of the first and only structure k = 1 (sum is 16 = A136793(2)); for
n = 3 with A000081(3) = 2
h(h(h())), h(h(u())), h(h(d())), h(h(p())),
h(u(h())), ...
..., p(d(p())),
p(p(h())), p(p(u())), p(p(d())), p(p(p())) are the 64 four-colored trees of the structure k = 1 and
h(h()h()), h(h()u()), h(h()d()), h(h()p()),
h(u()u()), h(u()d()), h(u()p()),
h(d()d()), h(d()p()),
h(p()p()),
...,
p(h()h()), p(h()u()), p(h()d()), p(h()p()),
p(u()u()), p(u()d()), p(u()p()),
p(d()d()), p(d()p()),
p(p()p()) are the 40 four-colored trees of the structure k = 2 (sum is 104 = A136793(3)).
Triangle T(n,k) begins:
4;
16;
64, 40;
256, 160, 256, 80;
1024, 640, 1024, 320, 1024, 640, 544, 640, 140;
- G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
- Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
- Martin Paech, Rows n = 1..10, flattened
- E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938, 2011 (Physical Review B 85, 045105, Jan 2012)
- E. Kalinowski and M. Paech, Table of four-colored Butcher trees B(n,k,m) up to order n = 4.
- M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)
Total number of elements up to and including row n is
A087803.
A242353
Number T(n,k) of two-colored rooted trees of order n and structure k; triangle T(n,k), n>=1, 1<=k<=A000081(n), read by rows.
Original entry on oeis.org
2, 4, 8, 6, 16, 12, 16, 8, 32, 24, 32, 16, 32, 24, 20, 24, 10, 64, 48, 64, 32, 64, 48, 40, 48, 20, 64, 48, 64, 32, 64, 48, 48, 36, 40, 32, 12, 128, 96, 128, 64, 128, 96, 80, 96, 40, 128, 96, 128, 64, 128, 96, 96, 72, 80, 64, 24, 128, 96, 128, 64, 128, 96, 80
Offset: 1
Let {u, d} be a set of two colors, corresponding each with the up-spin and down-spin electrons in the underlying physical problem. (We consider each rooted tree as a cutout of the Bethe lattice in infinite dimensions.) Then for
n = 1 with A000081(1) = 1
u(), d() are the 2 two-colored trees of the first and only structure k = 1 (sum is 2 = A038055(1)); for
n = 2 with A000081(2) = 1
u(u()), u(d()), d(u()), d(d()) are the 4 two-colored trees of the first and only structure k = 1 (sum is 4 = A038055(2)); for
n = 3 with A000081(3) = 2
u(u(u())), u(u(d())), u(d(u())), u(d(d())), d(u(u())), d(u(d())), d(d(u())), d(d(d())) are the 8 two-colored trees of the structure k = 1 and
u(u()u()), u(u()d()), u(d()d()), d(u()u()), d(u()d()), d(d()d()) are the 6 two-colored trees of the structure k = 2 (sum is 14 = A038055(3)).
Triangle T(n,k) begins:
2;
4;
8, 6;
16, 12, 16, 8;
32, 24, 32, 16, 32, 24, 20, 24, 10;
- G. Gruber, Entwicklung einer graphbasierten Methode zur Analyse von Hüpfsequenzen auf Butcherbäumen und deren Implementierung in Haskell, Diploma thesis, Marburg, 2011
- Eva Kalinowski, Mott-Hubbard-Isolator in hoher Dimension, Dissertation, Marburg: Fachbereich Physik der Philipps-Universität, 2002.
- Martin Paech, Rows n = 1..14, flattened
- E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938, 2011 (Physical Review B 85, 045105, Jan 2012)
- E. Kalinowski and M. Paech, Table of two-colored Butcher trees B(n,k,m) up to order n = 5.
- M. Paech, A sonification of this sequence, created with MUSICALGORITHMS, using simple 'division operation' instead of modulo scaling (3047 elements, 240 bpm).
- M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)
Total number of elements up to and including row n is
A087803.
A240605
Total number of distinct sequences for the number of double occupancy in the underlying Fermion problem (see comment), i.e., the number of distinct hopping sequences (cf. A198761, A225823) in four-colored rooted trees with n nodes, starting and ending with the same coloring in two colors (cf. A198760, corresponding to zero double-occupancy).
Original entry on oeis.org
1, 2, 10, 59, 397, 2878, 21266, 162732, 1253128, 9839212, 77644825, 620377508, 4981522538, 40351448045, 328421827064, 2690586461296, 22139293490054, 183106636176023, 1520309861062921, 12675106437486945, 106033283581264574, 890035798660219755
Offset: 2
n = 2
0 1 0 |-> T_{+U} T_{-U} |-> /\
n = 3
__
0 1 1 1 0 |-> T_{+U} T_{ 0} T_{ 0} T_{-U} |-> / \
0 1 0 1 0 |-> T_{+U} T_{-U} T_{+U} T_{-U} |-> /\/\
n = 4
____
0 1 1 1 1 1 0 |-> T_{+U} T_{ 0} T_{ 0} T_{ 0} T_{ 0} T_{-U} |-> / \
__/\
0 1 1 1 2 1 0 |-> T_{+U} T_{ 0} T_{ 0} T_{+U} T_{-U} T_{-U} |-> / \
__
0 1 1 1 0 1 0 |-> T_{+U} T_{ 0} T_{ 0} T_{-U} T_{+U} T_{-U} |-> / \/\
_/\_
0 1 1 2 1 1 0 |-> T_{+U} T_{ 0} T_{+U} T_{-U} T_{ 0} T_{-U} |-> / \
/\__
0 1 2 1 1 1 0 |-> T_{+U} T_{+U} T_{-U} T_{ 0} T_{ 0} T_{-U} |-> / \
/\/\
0 1 2 1 2 1 0 |-> T_{+U} T_{+U} T_{-U} T_{+U} T_{-U} T_{-U} |-> / \
/\
0 1 2 1 0 1 0 |-> T_{+U} T_{+U} T_{-U} T_{-U} T_{+U} T_{-U} |-> / \/\
__
0 1 0 1 1 1 0 |-> T_{+U} T_{-U} T_{+U} T_{ 0} T_{ 0} T_{-U} |-> /\/ \
/\
0 1 0 1 2 1 0 |-> T_{+U} T_{-U} T_{+U} T_{+U} T_{-U} T_{-U} |-> /\/ \
0 1 0 1 0 1 0 |-> T_{+U} T_{-U} T_{+U} T_{-U} T_{+U} T_{-U} |-> /\/\/\
- Alois P. Heinz, Table of n, a(n) for n = 2..400
- E. Kalinowski and W. Gluza, Evaluation of High Order Terms for the Hubbard Model in the Strong-Coupling Limit, arXiv:1106.4938 [cond-mat.str-el], 2011 (Physical Review B 85, 045105, Jan 2012)
- E. Kalinowski and M. Paech, Table of island altitude-profiles I(n,k) up to order n = 6.
- M. Paech, E. Kalinowski, W. Apel, G. Gruber, R. Loogen, and E. Jeckelmann, Ground-state energy and beyond: High-accuracy results for the Hubbard model on the Bethe lattice in the strong-coupling limit, DPG Spring Meeting, Berlin, TT 45.91 (2012)
-
b:= proc(x, y, m, v, d) option remember; `if`(y>x or y<0 or
y>m or v and y=m and d=1 or y=0 and irem(x, 2)=1, 0,
`if`(x=0, 1, `if`(v and y=m or y=0, 0, b(x-1, y, m, v,
`if`(d=2, 2, 1-d)))+ `if`(y=0 or y=1 and irem(x, 2)=0, 0,
b(x-1, y-1, m, v, `if`(d=2, `if`(v and y=m, 1, 2), 1-d)))+
b(x-1, y+1, m, v, `if`(d=2, 2, 1-d))))
end:
a:= n-> b(2*n-2, 0, iquo(n, 2, 'r'), r=0, 2):
seq(a(n), n=2..30); # Alois P. Heinz, May 09 2014
-
b[x_, y_, m_, v_, d_] := b[x, y, m, v, d] = If[y>x || y<0 || y>m || v && y == m && d==1 || y==0 && Mod[x, 2]==1, 0, If[x==0, 1, If[v && y==m || y==0, 0, b[x-1, y, m, v, If[d==2, 2, 1-d]]] + If[y==0 || y==1 && Mod[x, 2]==0, 0, b[x-1, y-1, m, v, If[d==2, If[v && y==m, 1, 2], 1-d]]] + b[x-1, y+1, m, v, If[d==2, 2, 1-d]]]]; a[n_] := b[2*n-2, 0, Quotient[n, 2], Mod[ n, 2]==0, 2]; Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Feb 24 2016, after Alois P. Heinz *)
Terms a(16) and a(17) are calculated on a HP Integrity Superdome 2-16s by courtesy of Hewlett-Packard Development Company, L.P., by
Martin Paech, May 08 2014 (The used algorithm generates explicitly all distinct sequences of double-occupancy, i.e. all valid "island altitude-profiles", and counts them.)
Comments