cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A207868 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 500, 2052, 500, 15, 52, 10900, 278982, 278982, 10900, 52, 203, 322768, 68162042, 455546040, 68162042, 322768, 203, 877, 12297768, 26419793726, 1625686993918, 1625686993918, 26419793726, 12297768, 877
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Table starts
...1.........1..............2.................5.................15
...1.........4.............34...............500..............10900
...2........34...........2052............278982...........68162042
...5.......500.........278982.........455546040......1625686993918
..15.....10900.......68162042.....1625686993918.103204230192540988
..52....322768....26419793726.10764437129618296
.203..12297768.15002771641712
.877.580849872

Examples

			Some solutions for n=5 k=3
..0..1..0....0..1..2....0..1..0....0..1..0....0..1..2....0..1..0....0..1..0
..1..0..1....1..0..3....1..0..1....1..0..1....1..2..0....1..0..1....1..0..1
..0..1..0....0..1..0....0..1..0....2..1..0....0..1..2....0..2..3....0..1..2
..1..0..1....1..0..1....1..0..1....0..2..3....1..0..1....1..0..1....1..0..1
..0..1..0....0..1..0....2..1..0....1..3..0....2..1..0....0..1..0....0..1..0
		

Crossrefs

Columns 1..5 are A000110(n-1), A207864, A207865, A207866, A207867.
Main diagonal is A207863.
Cf. A207997 (3 colorings), A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings).
Cf. A207981, A208001 (knight), A208021 (king), A208054, A208096, A208301.

A207997 T(n,k) = number of n X k 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 27, 41, 27, 8, 16, 81, 187, 187, 81, 16, 32, 243, 853, 1302, 853, 243, 32, 64, 729, 3891, 9075, 9075, 3891, 729, 64, 128, 2187, 17749, 63267, 96831, 63267, 17749, 2187, 128, 256, 6561, 80963, 441090, 1034073, 1034073, 441090, 80963
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 3 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
..1....1.....2.......4.........8.........16...........32............64
..1....3.....9......27........81........243..........729..........2187
..2....9....41.....187.......853.......3891........17749.........80963
..4...27...187....1302......9075......63267.......441090.......3075255
..8...81...853....9075.....96831....1034073.....11045757.....117997043
.16..243..3891...63267...1034073...16932816....277458045....4547477370
.32..729.17749..441090..11045757..277458045...6978332618..175605187731
.64.2187.80963.3075255.117997043.4547477370.175605187731.6787438272198
...
Some solutions for n=4, k=3:
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0
..2..0..1....2..0..2....1..0..2....1..2..1....2..0..1....1..2..1....1..2..1
..0..2..0....0..1..0....2..1..0....0..1..2....0..2..0....0..1..2....2..0..2
..1..0..1....1..2..1....1..0..1....1..2..0....2..0..2....2..0..1....1..2..0
		

Crossrefs

Cf. A020698 (column 3), A078100 (column 4), A207994 (column 5), A207995 (column 6), A207996 (column 7).
Main diagonal is A207993.
Cf. A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

Formula

2*T(n,m) = A078099(n,m) for m>1. - R. J. Mathar, Nov 23 2015

A198715 T(n,k)=Number of nXk 0..3 arrays with values 0..3 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 25, 25, 5, 14, 172, 401, 172, 14, 41, 1201, 6548, 6548, 1201, 41, 122, 8404, 107042, 250031, 107042, 8404, 122, 365, 58825, 1749965, 9548295, 9548295, 1749965, 58825, 365, 1094, 411772, 28609241, 364637102, 851787199, 364637102
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 4 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
....1........1............2...............5..................14
....1........4...........25.............172................1201
....2.......25..........401............6548..............107042
....5......172.........6548..........250031.............9548295
...14.....1201.......107042.........9548295...........851787199
...41.....8404......1749965.......364637102.........75987485516
..122....58825.....28609241.....13925032958.......6778819400772
..365...411772....467717288....531779578441.....604736581320925
.1094..2882401...7646461682..20307996787865...53948385378521909
.3281.20176804.125007943505.775536991678112.4812720805166620356
...
Some solutions with all values from 0 to 3 for n=6 k=4
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..2..1....0..1..0..1....0..1..0..1....0..1..0..2....0..1..0..1
..1..2..0..3....2..0..3..0....2..0..1..0....1..2..1..3....1..2..3..0
..2..0..2..0....1..3..0..2....3..2..0..2....0..3..0..2....3..1..2..3
..3..2..0..1....3..2..1..0....0..3..2..1....3..1..3..0....1..3..1..0
		

Crossrefs

Columns 1-7 are A007051(n-2), A034494(n-1), A198710, A198711, A198712, A198713, A198714.
Main diagonal is A198709.
Cf. A207997 (3 colorings), A222444 (labeled 4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

A198906 T(n,k) = number of n X k 0..4 arrays with values 0..4 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 33, 33, 5, 15, 380, 1211, 380, 15, 51, 4801, 50384, 50384, 4801, 51, 187, 62004, 2125425, 6907736, 2125425, 62004, 187, 715, 804833, 89793204, 948656912, 948656912, 89793204, 804833, 715, 2795, 10459180, 3794115705
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 5 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.....1..........1...............2....................5
.....1..........4..............33..................380
.....2.........33............1211................50384
.....5........380...........50384..............6907736
....15.......4801.........2125425............948656912
....51......62004........89793204.........130292546801
...187.....804833......3794115705.......17895005957823
...715...10459180....160319061892.....2457786852894234
..2795..135958401...6774239755817...337564362706067534
.11051.1767426404.286243775060868.46362726246946052884
...
Some solutions with values 0 to 4 for n=6, k=4:
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0
..0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2....0..1..0..2
..2..0..2..0....2..0..3..0....2..0..2..3....2..0..1..0....2..0..1..3
..3..2..1..4....0..1..0..4....0..4..0..2....3..2..4..3....0..3..4..2
..2..4..2..1....2..4..3..1....1..3..1..4....1..0..1..2....4..0..1..4
		

Crossrefs

Columns 1-7 are A007581(n-2), A198900, A198901, A198902, A198903, A198904, A198905.
Main diagonal is A198899.
Cf. A207997 (3 colorings), A198715 (4 colorings), A222144 (labeled 5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

A198982 T(n,k) = number of n X k 0..5 arrays with values 0..5 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 481, 1835, 481, 15, 52, 8731, 146286, 146286, 8731, 52, 202, 174454, 12662226, 53082012, 12662226, 174454, 202, 855, 3603244, 1112962873, 19622872903, 19622872903, 1112962873, 3603244, 855, 3845, 75251971
Offset: 1

Views

Author

R. H. Hardin, Nov 01 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 6 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.....1...........1.................2........................5
.....1...........4................34......................481
.....2..........34..............1835...................146286
.....5.........481............146286.................53082012
....15........8731..........12662226..............19622872903
....52......174454........1112962873............7267830860056
...202.....3603244.......98102456246.........2692353648978984
...855....75251971.....8651794282083.......997397244990907738
..3845..1577395861...763087851014929....369492074075459555844
.18002.33105096904.67305520316532514.136880688981914387733120
...
Some solutions with all values from 0 to 5 for n=6, k=4:
..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1
..1..2..3..0....1..2..3..0....1..2..3..0....1..2..3..0....1..2..3..0
..0..3..0..1....0..3..0..1....0..3..0..1....0..3..0..1....0..3..0..1
..2..0..3..0....1..0..3..0....1..0..3..0....1..0..3..0....1..0..3..0
..1..2..0..2....4..1..0..1....3..1..0..4....3..4..2..1....3..4..2..5
..4..5..2..1....5..4..2..4....5..2..3..1....1..5..1..5....5..1..5..2
		

Crossrefs

Columns 1-7 are A056272(n-1), A198976, A198977, A198978, A198979, A198980, A198981.
Main diagonal is A198975.
Cf. A207997 (3 colorings), A198715 (4 colorings), A198906 (5 colorings), A222281 (labeled 6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

A198723 T(n,k) = number of n X k 0..6 arrays with values 0..6 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 5, 34, 34, 5, 15, 499, 2027, 499, 15, 52, 10507, 232841, 232841, 10507, 52, 203, 272410, 34003792, 173549032, 34003792, 272410, 203, 876, 7817980, 5315840795, 141168480719, 141168480719, 5315840795, 7817980, 876, 4111
Offset: 1

Views

Author

R. H. Hardin, Oct 29 2011

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 7 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
.....1............1...................2.......................5
.....1............4..................34.....................499
.....2...........34................2027..................232841
.....5..........499..............232841...............173549032
....15........10507............34003792............141168480719
....52.......272410..........5315840795.........116492275674072
...203......7817980........846047363854.......96356630422085931
...876....234638905.....135284283124811....79732515488691835557
..4111...7176366133...21658679381667910.65980773070548173552412
.20648.221220625936.3468618095206638077
...
Some solutions with all values 0 to 6 for n=3, k=3:
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..0....0..1..2
..3..2..4....2..3..1....3..4..5....1..3..4....3..4..3....2..3..4....3..4..3
..4..5..6....4..5..6....6..2..4....5..0..6....1..5..6....5..4..6....5..6..2
		

Crossrefs

Columns 1-7 are A056273(n-1), A198717, A198718, A198719, A198720, A198721, A198722.
Main diagonal is A198716.
Cf. A207997 (3 colorings), A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A222340 (labeled 7 colorings), A198914 (8 colorings), A207868 (unlimited).

A222462 T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2013

Keywords

Comments

1/8 the number of 8-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
		

Crossrefs

Columns 1-5 are A000420(n-1), 7*43^(n-1), A222459, A222460, A222461.
Main diagonal is A068258.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A198914 (unlabeled 8 colorings).

Formula

T(n, k) = 7 * (720*A198914(n,k) - 360*A198982(n,k) - 240*A198906(n,k) - 90*A198715(n,k) - 24*A207997(n,k) - 5) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 7*a(n-1).
k=2: a(n) = 43*a(n-1).
k=3: a(n) = 270*a(n-1) - 1547*a(n-2).
k=4: a(n) = 1689*a(n-1) - 108775*a(n-2) + 1672631*a(n-3).
k=5: a(n) = 10754*a(n-1) - 8060499*a(n-2) + 2219242223*a(n-3) - 245682627864*a(n-4) + 5798947687589*a(n-5) + 448113231493438*a(n-6) - 2763020698450992*a(n-7).

A198908 Number of n X 2 0..7 arrays with values 0..7 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 34, 500, 10867, 313132, 10856948, 418689772, 17067989413, 715189507700, 30371156968582, 1298083132473604, 55654030558406039, 2389712969490386908, 102686352402421016536, 4414019789796312628796, 189771542890022982723145
Offset: 1

Views

Author

R. H. Hardin, Oct 31 2011

Keywords

Comments

Column 2 of A198914.

Examples

			Some solutions with values 0 to 7 for n=5:
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..3....2..3....1..2....2..3....2..3....2..3....2..3....2..3....2..3....2..3
..4..5....4..2....3..4....4..5....4..5....4..5....4..5....4..5....4..5....4..5
..0..3....1..5....5..6....2..3....6..7....3..6....6..2....6..1....0..6....6..7
..6..7....6..7....2..7....6..7....7..1....7..3....2..7....5..7....7..1....2..4
		

Crossrefs

Cf. A198914.

Formula

Empirical: a(n) = 88*a(n-1) - 2613*a(n-2) + 33232*a(n-3) - 184531*a(n-4) + 400344*a(n-5) - 246519*a(n-6).
Conjectures from Colin Barker, Feb 22 2018: (Start)
G.f.: x*(1 - 84*x + 2295*x^2 - 25272*x^3 + 107312*x^4 - 128772*x^5) / ((1 - x)*(1 - 3*x)*(1 - 7*x)*(1 - 13*x)*(1 - 21*x)*(1 - 43*x)).
a(n) = (1036945 + 344344*3^n + 75465*7^n + 12040*13^n + 2795*21^n + 91*43^n) / 2817360.
(End)

A198907 Number of n X n 0..7 arrays with values 0..7 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

1, 4, 2051, 319608038, 4717456775959530, 2869765342757082981876352
Offset: 1

Views

Author

R. H. Hardin Oct 31 2011

Keywords

Comments

Diagonal of A198914

Examples

			Some solutions with values 0 to 7 for n=3
..0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2....0..1..2
..3..4..5....3..4..5....3..4..5....3..4..1....3..4..5....3..4..5....3..4..5
..6..7..4....1..6..7....4..6..7....5..6..7....2..6..7....6..0..7....6..2..7
		

Programs

A198909 Number of nX3 0..7 arrays with values 0..7 introduced in row major order and no element equal to any horizontal or vertical neighbor.

Original entry on oeis.org

2, 34, 2051, 269940, 54381563, 13088156547, 3352514013159, 876632051686733, 230783525290600476, 60892298359864756053, 16078352442288906898825, 4246466444504000973551502, 1121629692628918068552449185
Offset: 1

Views

Author

R. H. Hardin Oct 31 2011

Keywords

Comments

Column 3 of A198914

Examples

			Some solutions with values 0 to 7 for n=4
..0..1..2....0..1..2....0..1..2....0..1..0....0..1..2....0..1..2....0..1..2
..3..4..0....3..4..5....3..0..4....2..3..4....1..3..4....3..0..4....3..4..0
..5..3..6....4..2..0....5..4..6....3..5..6....5..0..6....4..1..5....5..6..3
..0..1..7....1..6..7....6..1..7....7..4..0....0..1..7....6..7..4....3..5..7
		

Formula

Empirical: a(n) = 431*a(n-1) -53038*a(n-2) +2570412*a(n-3) -55789402*a(n-4) +610919758*a(n-5) -3707175288*a(n-6) +13010264300*a(n-7) -26380804149*a(n-8) +29517406483*a(n-9) -16243626186*a(n-10) +3246286680*a(n-11)
Showing 1-10 of 14 results. Next