cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A198956 q-expansion of modular form psi_0^4/t_{3B}.

Original entry on oeis.org

0, 1, 9, 27, 73, 126, 243, 344, 585, 729, 1134, 1332, 1971, 2198, 3096, 3402, 4681, 4914, 6561, 6860, 9198, 9288, 11988, 12168, 15795, 15751, 19782, 19683, 25112, 24390, 30618, 29792, 37449, 35964, 44226, 43344, 53217, 50654, 61740, 59346, 73710, 68922, 83592
Offset: 0

Views

Author

N. J. A. Sloane, Nov 01 2011

Keywords

Comments

psi_0 is given in A004016, t_{3B} in A198955.
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 9*q^2 + 27*q^3 + 73*q^4 + 126*q^5 + 243*q^6 + 344*q^7 + 585*q^8 + 729*q^9 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(3), 4), 43)[2]; /* Michael Somos, Dec 27 2014 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ q QPochhammer[ q^3]^8 (1 + 9 q (QPochhammer[ q^9] / QPochhammer[ q])^3), {q, 0, n}]; (* Michael Somos, Dec 27 2014 *)
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^3 + A)^8 * (1 + 9 * x * (eta(x^9 + A) / eta(x + A))^3), n))}; /* Michael Somos, Aug 23 2012 */
    
  • Sage
    ModularForms( Gamma0(3), 4, prec=43).1;# Michael Somos, May 23 2014
    

Formula

Expansion of a(q) * (c(q) / 3)^3 in powers of q where a(), c() are cubic AGM theta functions. - Michael Somos, Aug 23 2012
Expansion of eta(q^3)^8 * (1 + 9 * (eta(q^9) / eta(q))^3) in powers of q. - Michael Somos, Aug 23 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = (1/3) (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A215711. - Michael Somos, Aug 23 2012
Convolution of A004016 and A106402. - Michael Somos, Aug 23 2012
Conjecture: Multiplicative with a(3^e) = 3^e, a(p^e) = sigma_3(p^e) for prime p <> 3. - Andrew Howroyd, Aug 08 2018