cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A024102 a(n) = 9^n - n.

Original entry on oeis.org

1, 8, 79, 726, 6557, 59044, 531435, 4782962, 43046713, 387420480, 3486784391, 31381059598, 282429536469, 2541865828316, 22876792454947, 205891132094634, 1853020188851825, 16677181699666552, 150094635296999103, 1350851717672992070, 12157665459056928781, 109418989131512359188
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. numbers of the form k^n - n: A000325 (k=2), A024024 (k=3), A024037 (k=4), A024050 (k=5), A024063 (k=6), A024076 (k=7), A024089 (k=8), this sequence (k=9), A024115 (k=10), A024128 (k=11), A024141 (k=12).
Cf. A198966 (first differences).

Programs

  • Magma
    [9^n-n: n in [0..25]]; // Vincenzo Librandi, Jul 06 2011
    
  • Magma
    I:=[1, 8, 79]; [n le 3 select I[n] else 11*Self(n-1)-19*Self(n-2)+9*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 17 2013
    
  • Mathematica
    Table[9^n - n, {n, 0, 20}] (* or *) CoefficientList[Series[(1 - 3 x + 10 x^2) / ((1 - 9 x) (1 - x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jun 17 2013 *)
    LinearRecurrence[{11,-19,9},{1,8,79},30] (* Harvey P. Dale, Dec 25 2024 *)
  • PARI
    a(n)=9^n-n \\ Charles R Greathouse IV, Oct 07 2015

Formula

From Vincenzo Librandi, Jun 17 2013: (Start)
G.f.: (1-3*x+10*x^2)/((1-9*x)(1-x)^2).
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3). (End)
E.g.f.: exp(x)*(exp(8*x) - x). - Elmo R. Oliveira, Sep 09 2024

A268356 Numbers n such that 8*9^n - 1 is prime.

Original entry on oeis.org

0, 1, 2, 5, 25, 85, 92, 97, 649, 2017, 2978, 3577, 4985, 17978, 21365, 66002, 95305, 142199
Offset: 1

Views

Author

Robert Price, Feb 02 2016

Keywords

Comments

a(19) > 2*10^5.

Crossrefs

Programs

Showing 1-2 of 2 results.